

μFLOW 100GAS

compact calculator for gas applications

Instruction manual

Valid from software version GS 1.9917

content

Explanations of symbols		
General Hints	3	
Qualified Personnel	3	
Technical data	4	
Dimensions		
Mechanical mounting	4	
Cleaning	5	
General hints for Electrical connection	5	
Connection examples for inputs	5	
Connection examples for the output	6	
The terminals in detail		
Choosing the signal for the temperature input (Pt100 or current)		
Exchange of the fuses	7	
The displays		
Menu tree	9	
Short example for changing parameter value	11	
Access	11	
Sensorbyte ó menu point SENSORS (Level C/65)	11	
k-Factor ó Menu point k-factor (level D/7)	12	
The transfer characteristic	12	
Application of the RS232 Interface		
Link and control of the µFLOW with a PC		
Adjusting the Baudrate - menu option BAUD (level D/46)		
Adjusting the duration of the transmission cycle	12	
Parameters	12	
Protocol	13	
Data format	13	
Trouble shooting	14	
Description of the failure		
Possible reason	14	
EC-Declaration of Conformity	15	

Explanations of symbols

Warning of a danger place (caution: consider documentation) ISO 3864, No. B.3.1

Warning of gangerous electrical voltage ISO 3864, No. B.3.6

General Hints

For reasons of clarity this manual does not contain detailed information about all types of products and cannot take into account every conceivable case of installation, operation or maintenance. If you require further information or should problems occur which are not sufficiently explained in the manual, you can consult us directly to obtain the necessary information.

CAUTION

This equipment is a Limit Class A once. It can cause radio disturbance in residential. On this case costumer has to take care appropriate measure.

This equipment should only be installed and operated after qualified personnel have ensured that suitable power supply (see name plate) will be used and that during normal operation or in case of a defect in the system or in components no hazardous situation can occur. Therefore serious injuries and/or considerable material damage cannot be ruled out in the event of improper handling of the device.

The perfect and safe operation of this equipment is conditional upon proper transport, proper storage, installation and assembly as well as on careful operation and commissioning.

May we also draw your attention to the fact that the contents of the manual are not part of a previous or existing agreement, approval or legal relationship or an amendment thereof. All obligations of the S.K.I. GmbH result from the contract of purchase which also contains the full and solely valid warranty agreement. These contractual warranty conditions are neither extended nor restricted by the contents of the manual.

Qualified Personnel

are persons familiar with the installation, assembly, commissioning and operation of the product and who have the appropriate qualifications for their activities such as:

- Training or instruction or authorization to operate and maintain devices/systems according to the standard of safety technology for electrical installations.
- Training or instruction in the proper care and use of protective equipment in accordance with appropriate safety practices.
- Rendering first aid.

attention

During startup no buttom on the front panel must be pressed

Technical data

indication: LC-Display, 2 lines with 16 signs

nominal voltage: 230 VAC (±10%)

115 VAC (optional) 24 VDC (optional)

frequency range: 50 Hz $\pm 10\%$

nominal current: 65 mA @230/115V 50Hz

500 mA @24 VDC

nominal power 15 VA @230/115V 50Hz

12 VA @24 VDC

maximum main interference: 150 V/20 ms, followed by automatic RESET by integrated

monitoring module with backup of the count

EMV tests: according to EN 55011/55011-A1; EN 61326-1/61326-A1 and

EN 50082-1/2

Functional test: Watchdog, FAIL function with drop-out contact in the event of fault

Available auxiliary power: 24 VDC/160 mA for transmitter supply (with auxiliary power

115/230 VAC only) No transmitter supply is possible with auxiliary

power 24 V DC

analog inputs: 6x 0/4-20 mA switchable via software

2x switchable to Pt100 direct input

measuring range for Pt100: . 200°C +500°C

Internal resistance 24 Ohm per current input, >10 M Ω for Pt100

14 bit resoluton with integrated 50Hz-suppression; complete

electrical isolation from the computer and all outputs(except in the

case of transmitter supply))

Frequency input: 0,1 up to 10kHz

Analog outputs: 1x 0/4-20 mA, optional 2x 0/4-20 mA

max. load: 500 Ohm

count pulse: max. 1W, max 30 V

resolution of the outputs: 14 bits, completely electrically isolated from the computer and all

inputs

relay outputs: 2x free configurable, 1x Fail-relay

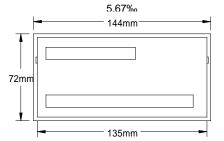
max. load of the contacts: 250VAC/8A

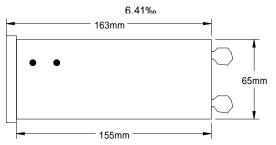
*Caution: Before installation and operation costumer has to check the nominal voltage.

Only the declaration on the type plate is guilty!

Dimensions

Analog/Digital converter


enclosure: glass-fibre-reinforced Noryl, front panel 144x72 mm² (DIN)

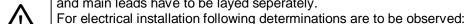

material: Noryl SE1 GFN2

protection class: IP 20 (enclosure); IP64 (display unit)

depth: ca. 170 mm

panel cut-out: 5.45%x 2.7%(138 x 68 mm²)

Mechanical mounting


The standard μ flow is a panel mounting unit. After preparing the panel cut-out, costumer has to mount the μ Flow while using the delivered mounting brackets. Please pay attention to use the delivered seal between panel and μ Flow-housing.

Cleaning

The µFlow has to be cleaned only with a dry daster.

General hints for Electrical connection

Signal leads must be shielded, one end of the shield has to be connected to mass. Signal and main leads have to be layed seperately.

- power supply wiring has to be designed for nominal current
- power supply has to be installed, so that the power supply of μFlow can be switched off
- switch off power supply before opening the µFlow

Connection examples for inputs

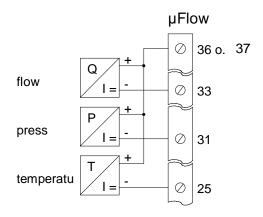
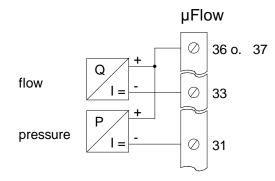
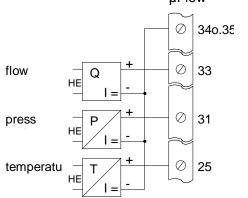




Bild 1: passive current inputs, the μFlow powers the transmitters

picture 3: without temperature measurement uFlow

Picture 5: active signals, the transmitters are powered by an external supply.

HE = auxiliary power

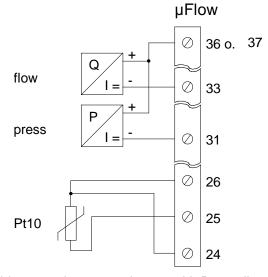
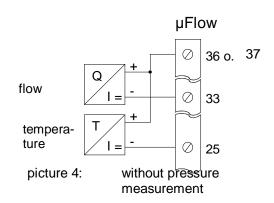
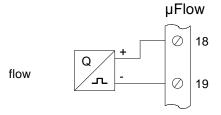
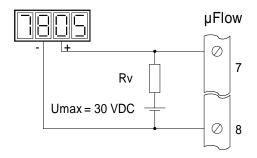




Bild 2: passive current inputs, with Pt100 direct connection instead of using a temperature transmitter



picture 6: frequency input for the flow signal

5

Connection examples for the output

picture 7: external counter with voltage inpurt. The series resistor Rv should be used in a range of 1 to 10 $k\Omega$.

picture 8: analog output, outputs are active, there is no need for an external powersupply. The max. load is $500~\Omega$

The terminals in detail

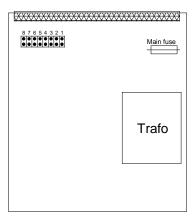
Long terminal row

Long to	<u>ermina</u>	il row
terminal	name	use
1	L/DC+	Power supply, (24 V DC + optional)
2	N/DC-	Power supply, (24 V DC - optional)
3	PE	mass
4	RXD	Transmit Data
	TXD	Receive Data
6	DGND	Data Ground
7	CNT	Pulse output NPN Open collector
8	DGND	GND for pulse output
9	CO	
10	NO	Relay 1
11	NC	4
12	CO	
13	NO	Relay 2
14	NC	4
15	CO	
16	NO	Fail-Relay
17	NC	
18	Freq+	Frequency input
19	Freq-	
20	OUT2-	Analog output 2 (Option)
21	OUT2+	
22	OUT1-	Analog output 1
23	OUT1+	

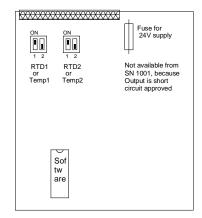
short terminal row

terminal	name	use			
24	В				
25	A/IN5	Current input T1 or ——Pt100—			
26	b				
27	В				
28	A/IN6	Not used			
29	b				
30	IN4	Not used			
31	IN3	Current input pressure			
32	IN2	Current input Flow 2			
33	IN1	Current input Flow 1			
34	GND	GND for transmitters			
35	GND	GND for transmitters			
36	24V	Auxiliary power for transmitters			
37	24V	Auxiliary power for transmitters			

<u>hint</u>


When selecting a frequency generator, attention must be paid to the correct setting of the Jumpers located inside the unit behind the FREQ input terminals.. The Jumpers are set to TTL/CMOS inputs at the works unless otherwise specified in the parameterization log. The following table shows the correct Jumper settings.

signal type	Jur	npe	er (a	CC.	to t	ор ۱	/iev	/)
	1	2	3	4	5	6	7	8
TTL, CMOS, pulse	Х	Χ	0	0	0	1	1	0
pulse with log.0 above 1,4V	Х	Х	0	0	0	0	1	0
pulse with log.0 below 0,2V	Х	Χ	0	0	1	0	1	0
open Collector NPN	Х	Χ	1	0	0	0	1	0
open Collector PNP	Х	Х	0	0	0	0	1	1
Coil (high impedance)	Х	Χ	0	1	0	0	0	0
Coil (low impedance)	Х	Х	0	1	0	0	0	1


x = don`t care
1 = Jumper

0 = no Jumper

Jumper for frequency inputs

Picture 11: main circuit board with Jumpers for the frequency input

picture 12: CPU circuit board with the DIP-switches for the temperature inputs

Choosing the signal for the temperature input (Pt100 or current)

Picture 12 showes the location of the DIP switches for the adjustment of the temperature inputs. The switches are reachable after dismounting of the back panel

switch	1	2
Pt100	off	on
current	on	off

Exchange of the fuses

The main fuse is located on the main circuit board (see picture 11). The fuse for the 24 V auxiliary power is located on the CPU circuit bord (see picture 11. The fuses are reachable after dismounting of the back panel. The type of fuse to be used is depending on the power supply

Power supply	Main fuse	Fuse for 24V
230V AC	250V/80 mAT	250V/160 mAT
115V AC	250V/80 mAT	250V/160 mAT
24V DC	250V/0,5 AT	-

The displays

The following table show the different displays. By pressing the "♥" key, it is possible to switch between the displays in descending order of the table. By pressing the "♠" key, it is possible to switch in the opposite direction. After pressing the SELECT key, the TAG-no., which can be programmed by the user, will be indicated. After pressing the SELECT key again, you get back to the normal display mode.

Standard volumetric flow temperature and pressure	0.0 m³/h t=0.0° p=0.00kPa
Summator, standard volumetric flow temperature and pressure	ΣU= 0 m³ t=0.0° p=0.00kPa
Standard volumetric flow and Summator, standard volumetric flow	Ún= 0.0 m³/h ΣV= 0 m³
Standard volumetric flow and state of alarm contacts/relays	On= 0.0 m³/h A1=NORM A2=NORM
Actual volumetric flow and Standard volumetric flow	V = 0.0 m³/h Vn= 0.0 m³/h
Compressibility and supercompressibility	Z= Zn=
Flow velocity and density of the medium	ω =

Branching of subdisplays for value reading only available with access for Laboratory, OEM or Factory

SELECT drücken> DMM-Modus

Menu tree

attention: For somme parts of the menu the access is denied.

Level	А		В	С	D	Input / indication	comments
1	Info		Version			Ver. GAS-1.9917ff	Indication of the software version, no input possible
2		,	Ser.No			SN:	Indication of the serial number, no input possible
3	Param	ıs	Flow1	dp	dP1.min	Input of dP-value for 0/4mA	Does not appaer, if a velocity sensor is choosen
4					dP1.max	Input of dP-value for 20mA	
5					dp2.min	Input of dP-value for 0/4mA	Attention: if no second dp- transmitter is connected, the values for dp2.min + dp2.max must be set to zero
6					dP2.max	Input of dP-value for 20 mA	
7					k-factor	Input of value	Specification of the k-factor
8				\downarrow	density	Input of value	in kg/Nm³
9				velocity	Puls/V	Input of value	Does not appaer, if a dp-sensor is chosen
10					Vmin	Input of value	Zero point in m³/h
11					Vmax	Input of value	span in m³/h
12				Pipe-ID		Input of value	Internal pipe diameter
13				cutoff		Input of value	cutoff in %
14			Temp	T1.min		temperature according to 0/4mA	
15				T1.max		temperature according to 20mA	
16			COMP 1	G1min		Input of value	in Vol. %
17			*	G1max		Input of value	in Vol. %
18			COMP 2	G2min		Input of value	in Vol. %
19			V	G2max		Input of value	in Vol. % Only available, if the process GASKOMP is
20			LIMIT	Dist		Input of value	chosen in level 75
21			density	Rho1		Input of value	in kg/Nm³
22 23				Rho2 Rho3	<u> </u>	Input of value Input of value	in kg/Nm³ in kg/Nm³
24			press	p.min		Pressure according to 0/4 mA	III Kg/IVIII
25			+	p.max		Pressure according to 20 mA	
26			RG_DAT	CO2-CON	,	Input of value	in % Only available, if the
27				N2-CON		Input of value	in % process AGA is chosen
28				Ho,n		Input of value	in MJ/m³ in level 75
29			\downarrow	density		Input of value	in kg/Nm³
30			Signal	Damping		Input of value	
31				Timebas		Hours, minuts, seconds,	choosing the timebase
32				UNIT	V_N	Nm³, NI	Unit for standard volumetric flow
33					* $\sum V_N$	Nm³, NI	Unit for summator of V _N
34					m	kg, t, lbs	Unit for mass flow
35					* ∑m	Kg, t, kt	Unit for summator of m
36					t	°C, K, F	Unit for temperature
37					р	bar, kPa, hPa, psi	Unit for pressure
38			Outputs	Relay1	fnction	V _N , V.akt, m, t., p	Function of Relay
39					Charact	min, max	Characteristic of Relay
40				★	value	Input of value	
41				Relay2	fnction	V _N , V.akt, m, t., p	Function of Relay
42					Charact	min, max,	Characteristic of Relay
43				★	value	Input of value	Function of angles sectors
44				Analog1	fnction	V _N , V.akt, m, t., p	Function of analog output
45	+				Charact	4-20, 0-20	Current characteristic
46					Lo-Val	Input of value	Value for 0/4 mA

Level	Α	В	С	D	Input / indication	comments
47			+	Hi-VAL	Input of value	Value for 20 mA
48			Analog2	fnction	V _N , V.akt, m, t., p	Function of analog output
49				Charact	4-20, 0-20	Current characteristic
50				Lo-Val	Wert eingeben	Value for 0/4 mA
51			\downarrow	Hi-VAL	Input of value	Value for 20 mA
52			cntpuls	Charact	$\sum m, \sum V_N$	Characteristic of the countpulse
53				Pulswid	10ms, 50ms, 100ms	Pulse width
54			1	Scale	1:1, 1:10, 1:100, 1:1000	Scale of pulse
55			RS232	Cycle	Input of value	Course of pulses
56			1	Baud	4800, 9600	Baudrate
57		Tag.No.		2444	Input of signs	Specification of TAG-No
58	calibrt	inputs	IN1	Lo-VAL	Connect 4mA to input,	Calibration of current input 1 low value
	Calibri	liiputs			press ENTER o.Reset	·
59				Hi-VAL	Connect 20mA to input, press ENTER o.Reset	Calibration of current input 1high value
60			IN2	see IN1	see IN1	see IN1
61			IN3	see IN1	see IN1	see IN1
62			IN4	see IN1	see IN1	see IN1
63			IN5	see IN1	see IN1	see IN1
64			IN6	see IN1	see IN1	see IN1
65			RTD1	LO-VAL	Connect 0 Ω to input, press ENTER o.Reset	Calibration or Pt100 input low value
66				HI-VAL	Connect 330 Ω to input, press ENTER o.Reset	Calibration or Pt100 input high value
67		\downarrow	RTD2	see RTD 1	see RTD 1	
68		outputs	OUT1	DAU-LO	adjustment: 4,0 mA	Output calibration for 4 mA
69			+	DAU-HI	adjustment: 20,0 mA	Output calibration for 20 mA
70	\downarrow	\downarrow	OUT2	see OUT1	see OUT1	
71	Config	Remote			Remote Control	To leave remote control press the RESET keys
72		Usernam			Input of value	Input of a username by using the arrow keys
73		Languag			Deutsch, English	Choose language
74		Struct	Sensors		Input of value	Choosing the sensor structure
75		Process			Ideal, AGA, Ethyl, Gaskomp	Calculation basis for the density
76		Reset			SW-Res, HW-Res, both, none	Reset of parametrisation and/or Structure ! ATTENTION! new calibration and parametrisation required
77		Acc_Cnt			N.o.acc.: 21	Account counter
78	\downarrow	In-Byte			Input of value	Choosing inputs as 020 or 420 mA
79	Factory	SERIAL.			Input of value	Serial number
80		Access			Reset of account counter	
81		HW-Byte			Input of value	Selecting the outputs
82	\downarrow	Name			Input of signs	Startup message
83	Σ-Reset		1			Reset of summators
84	Access	ID-No.	1	1	Input of value	Choosing the access
85		Level	1	1	list	Choosing the access
86	Measure		 	+		Back to normal operation
	oabaro		<u> </u>	1	1	zac. to normal operation

internal summators do not have a run over, that means that depending on configuration the value of the counter can be so high, that it is not possible to indicate the unit and the formula sign. For this reason it is neccessary to reset the summators in time.

Short example for changing parameter value

It is necassary for you to change the value of temperature for 20 mA. Follow the short instruction below:

Press simultaniously both PROG-keys. If flow computer has a password, you have to set ID-no.. Programm \$2552% Now you allowed to change most of all menue points (see table below \$Access%). Now press →-key. sPARAMS% indicated on the left side of display. Press SELECT-key. Press →key as long as sTEMP1‰s shown on left side of display. Press SELECT-key, Press → key as long as you can read sTEMP1,max%on left side of display. Press SELECT-key. Now you can change value of temperature while using \leftarrow -, \uparrow -, \rightarrow - and \downarrow -key. Finish paramter setting while pressing SELECT-key. Press →-key as long as sENDE% shown on left side of display. Press SELECT-key. Press →-key as loong as sMEASURE is shown on the side of display. Press SELECT-key. Now the flow computer save parameter changing and starts measuring mode. If you want to protect paramter mode press both PROG-keys. Then press →-key as long as sACCESS‰s shown on the left side of display. Press shown on the left side of display. Now press SELECT-key. Go to menue-point END and then MEASURE to leave parameter mode. Now the flow computer is protected to not authorized programming.

warning: RESET-keys are only in use for factory setting

Access

The following tabel shows the most important ID-codes with the available parts of the menu.

Code	0000	1508	2552	XXXX	XXXX	XXXX
Menu	blocked	worker	Eng.	Labor.	OEM	Factory
INFO		Х	Х	Х	Х	Х
PARAMS			Х	Х	Χ	Х
CALIBRG				Х	Х	Х
CONFIG					Х	Х
FACTORY						Х
Σ -RESET		Х	Х	Х	Х	Х
ACCESS		Х	Х	Х	Х	Х
MEASURE		Х	Х	Х	Х	Х

Sensorbyte Ë menu point SENSORS (Level C/65)

The sensorbyte indicates, which inputs are available and how they can be used.. The following table should enable you to choose the correct sensorbyte.

inputs	criterium: 0	criterium 1	choose 0 or 1	Bit	
temperature 1	Transmitter	PT 100	0	1	0
Temperature 2	Transmitter	PT 100	0	2	0
pressure	Gauge pressure	abs pressure	1	4	4
Flow input 1 kind of sensor	velocity	dp	1	8	8
Flow input 1 signal	rad/current	lin/frequency	0	16	0
Flow input 2 kind of sensor	velocity	dp	0	32	0
Flow input 2 signal	rad/current	lin/frequency	0	64	0
	•		Sensorbyte	; =	12

k-Factor Ë Menu point k-factor (level D/7)

By using an avereraging pitot tube, the k-factor of the dp-sensor can be taken from the differential pressure calculation sheet. For unknown k-factors the value can be calculated by using the following equation.

$$k = \sqrt{\frac{\rho_N * T_A}{\Delta p * p_A}} * \frac{15,23 * V_N}{D_i^2}$$

used units:

$\left[V_N\right] = \frac{Nm^3}{h}$	Standard volumetric flow	$\left[\rho_N\right] = \frac{kg}{Nm^3}$	Density at T=273,13K and p=101,325 kPa
$[D_i] = mm$	Internal diameter of the pipe	$\left[\rho\right] = \frac{kg}{m^3}$	Density under operation conditions
$[\Delta p] = mbar$	Full scale differential pressure	$[p_A] = kPa$	Design medium pressure
		$[T_A] = K$	Design medium temperature

The transfer characteristic

A square rooted or a linear characteristic can be chosen. The μ FLOW offers the possibility to link a second differential pressure transmitter for the extension of the measuring range by measuring point switching. Under the menu options dp.min. and dp.max. the measuring range boundaries for this second transmitter can be indicated in the same way as it is already described above for the first transmitter.

Application of the RS232 Interface

The RS232 interface supports datalogging.

Link and control of the µFLOW with a PC

The connection between $\mu FLOW$ and PC is made by a three-core cable with max. 10 m length. The TxD clamp at the $\mu FLOW$ is to be connected with the RxD line at the PC interface and the RxD clamp at the $\mu FLOW$ with the TxD line of the PC.

The terminal software of the selected COM interface should be adjusted to operation without protocol or with XON / XOFF protocol. Only if a hardware protocol is intended, the appropriate handshake lines at the serial interface are to be short circuited.

Adjusting the Baudrate - menu option BAUD (level D/46)

Possible are 4800 and 9600 Baud.

Adjusting the duration of the transmission cycle

- menu option CYCLE (level D/45)

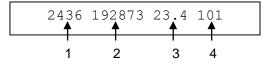
The transmission cycle influences directly the developing data flood. Since it concerns with currents in all rule slow processes, the quantity of data which can be stored should be reduced to a meaningful measure. The µFLOW therefore supports a minimum interval of 5 seconds.

Parameters

According to the transfer parameters selected in the very most applications the µFLOW transmits with

- 8 data bits
- 1 stop bit
- without parity
- with XON / XOFF log

The Baudrate as well as the time between two transfers are adjustable, other parameters are not adjustable.


Protocol

Due to the low absolute transfer rates it should not come to any conflict in the communication between $\mu FLOW$ and PC. Therefore a protocol is actually unnecessary. Nevertheless the transmission activity of the $\mu FLOW$ can be controlled by transmitting XOFF by the PC and be continued with XON afterwards again for all cases. If the interruption should last longer than a transmission cycle, then the data resulting in the meantime are ignored.

Data format

The μ FLOW transmits text character sequences (ASCii) with information about the momentary flow, the status of the totalizer as well as the primary status datas pressure and temperature. The individual values are separated by blank (ASCii code 32).

A typical line read from left to right could look as follows:

- 1. actual value of the flow in adjusted unit
- 2. totalizer in adjusted unit
- 3. temperature in adjusted unit
- 4. pressure in adjusted unit

The entry and the processing of the measuring data is made according to the standard of the used hard- and software on the PC.

Trouble shooting

Description of the failure	Possible reason
No indication on th display	Auxiliary power is missing
	Main fuse is defective (see page 8)
Instrument does not react on the current inputs	Sensorbyte chosen wrong (see page 12)
Instrument does not react on the frequency input	Sensorbyte chosen wrong (see page 12)
	Setting of the jumper does not fit to the signal (see page 6)
Instrument does not react on the Pt100 input	Sensorbyte chosen wrong (see page 12)
	DIP-switches in wrong position (see page 8)
Auxiliary power for the sensors is missing	Fuse for 24VDC defective (see page 8)
	There is no fuse from SN1001
	External short circuit
Indicated measured and calculated values are not realistic	Wrong parametrisation
Output current wrong	Wrong sttructure 020 mA instead of 420 mA or
	the other way round
	Zero or span value wrong

Of course this listing can not be complete. If any mistake occurs, which is not described here, please do not hesitate to contact us.

EC-Declaration of Conformity according to Article 10.1 of the Directive 2007/108/EEC (EMC-Directive)

We,

S.K.I. Schlegel & Kremer Industrieautomation GmbH, Hanns-Martin-Schleyer-Str. 22, 41199 Mönchengladbach

declare in the whole responsibility that the product:

Sensor Unit

Product

µFLOW

Type designation and (if necessary) serial number

the requirements under the Council Directive 2004/108/EC to compliance with the laws of Member States relating to electromagnetic compatibility fulfilled.

The product complies with the requirements of the following guidelines:

EMISSION

EN 55011: 2009 Ë Limit Class A

(Limits and methods for the determination of electromagnetic radiations of industrial, scientific and medical (ISM) equipment)

• <u>IMMUNITY</u>

EN 61326-1: 2006

(Electrical equipment for measurement, control and laboratory use - Part 1 General Requirements)

- use of the product in residential and industrial areas -

This declaration is based on:

The above mentioned standards have been harmonized and published into the official journal of the EC Nbr. C59/2011

7. Krem

29.03.2011

Friedhelm Kremer General Manager

S.K.I. Schlegel & Kremer Industrieautomation GmbH

Postfach 41 01 31 D 41241 Mönchengladbach Hanns-Martin-Schleyer-Str. 22 D 41199 Mönchengladbach

Telefon: ++49 (0)2166-62317-0 Fax: ++49 (0)2166-611681 Web: <u>www.ski-gmbh.com</u> e-mail: <u>info@ski-gmbh.com</u>

Trademarks and logos are the property of their owners Subject to technical changes. Illustrations may contain options