

AccuMind®

Kompaktrechner für Durchflussmessungen

Betriebs- und Montageanleitung Gültig ab Softwareversion 1.0.0 und QAL-1.0.0

Achtung:

Für AccuMind[®] mit den Firmwareversionen 15.xx.xx, 16.xx.xx, 17.xx.xx, 19.xx.xx, 2.xx.xx und 3.xx.xx kann die entsprechende Betriebs- und Montageanleitung von der S.K.I. GmbH bezogen werden. Diese Versionen sind nicht Gegenstand dieser Anleitung.

Beachten Sie vor Inbetriebnahme die Hinweise auf den Seiten 7 und 8!

Inhalt

1	Allge	gemeine Hinweise 7		
	1.1	Symbolerläuterung		
	1.2	Bestimmungsgemäße Verwendung	7	
	1.3	Sicherheitshinweise	7	
	1.4	Qualifiziertes Personal	7	
	1.5	Weitere Hinweise	8	
	1.6	Besondere Warnhinweise	8	
	1.7	Reinigung	8	
2	Tech	inische Daten	9	
	2.1	Anschlüsse und Schnittstellen	9	
	2.2	Benutzerschnittstelle	10	
	2.3	Gehäuse	11	
	2.3.2	Schalttafeleinbaugehäuse (Bestelloption "PM")	11	
	2.3.2	2 Wandaufbaugehäuse (Bestelloption "WM")	12	
3	Verv	vendung	15	
	3.1	Allgemein	15	
	3.2	QAL1-Anwendung (Bestelloption "QL")	15	
	3.3	Anwendung mit Wirkdruckgeber	16	
3.4 Anwe		Anwendung mit Volumenstromsensor	16	
	3.5	Messstoffe	16	
	3.6	Notwendige Sensoren	17	
	3.7	Funktionserweiterungen	18	
4 Montage des AccuMind [®]		tage des AccuMind [®]	18	
	4.1	Schalttafeleinbaugehäuse (Bestelloption "PM")	18	
	4.2	Wandaufbaugehäuse (Bestelloption "WM")	18	
5	Klen	nmenbelegung und elektrischer Anschluss	19	
	5.1	Anschlüsse am AccuMind [®]	19	
	5.1.1 Schalttafeleinbaugehäuse (Bestelloption "PM")		19	
	5.1.2	2 Wandaufbaugehäuse (Bestelloption "WM")	19	
	5.1.3	8 Wandaufbaugehäuse mit dritten Analogausgang (Bestelloption "WMA")	20	
5.2		Typenschild	20	
	5.3	Netzteilklemme mit Relais	21	

	5.4	Hau	ptklemmleiste	21
5.4.1		1	Anschluss der Pt100	21
	5.4.	2	Messumformer (MU) an den Analogeingängen	22
	5.4.	3	Schalt- und Frequenzeingänge	23
	5.4.	4	Anschluss der Analogausgänge	23
	5.4.	5	Dritter Analogausgang bei Bestelloption "WMA"	24
	5.4.	6	Elektronische Relais	25
	5.4.	7	Modbus/M-Bus (Seriell 1)	25
5.5 Ethernetschnittstelle		26		
5.6 D-Sub-Anschluss (Seriell 2)		26		
	5.7	Schr	nittstellenkonverter für Profibus/Profinet	26
	5.7.	1	Technische Daten des Schnittstellenkonverters	26
	5.7.	2	Elektrischer Anschluss des Schnittstellenkonverters	27
	5.8	Ans	chluss einer LSE-HD (Funktionserweiterung)	27
	5.8.	1	Allgemeine Verdrahtung	27
	5.8.	2	Externe Auslösung	28
	5.9	Ans	chluss eines AccuFlo [®] Zero (Funktionserweiterung)	28
6	Betr	rieb		29
	6.1	Allg	emeine Bedienung	29
	6.2	Recl	htemanagement/Authentifizierung	30
	6.3	Anp	assung der Prozesswertdarstellung	30
	6.4	Die	Menüauswahl des AccuMind®	31
	6.5	Bed	ienung der Untermenüs	32
7 Ausgabe von Warnungen und Fehlern		33		
	7.1	Allg	emein	33
	7.2	Disp	playanzeige	33
7.3 Warnungen im Display		33		
	7.4	Fehl	lermeldungen im Display	34
	7.5	Aus	gabe von Fehlern über die Ausgänge	35
8	Fun	ktion	serweiterungen	36
	8.1	Luft	spüleinrichtung LSE	36
	8.1.	1	Hintergrund	36
	8.1.	2	Anzeige	36
	8.1.	3	Ablauf eines Spülzyklus	36
	8.1.	4	Parametrierung und manuelle Steuerung	38
	8.1.	5	Fehlermeldungen im Display	40
	8.1.	6	Signalisierung an die Leitstelle/eine weitere LSE	40
	8.2	Auto	omatischer Nullpunktabgleich AccuFlo®Zero	41

	8.2.2	1	Hintergrund	41
	8.2.2	2	Anzeige	42
	8.2.3	3	Ablauf eines Nullpunktabgleichs	42
	8.2.4	1	Parametrierung und manuelle Steuerung	43
	8.2.5	5	Fehlermeldungen im Display	45
	8.2.6	5	Signalisierung an die Leitstelle	45
9	Eins	tellur	ng der Parameter	46
	9.1	Basis	seinstellungen	46
	9.1.2	1	Tag (Messstellenkennzeichnung) und Messstoff-Auswahl	47
	9.1.2	2	Messstoff-Art	47
	9.1.3	3	Messstoff-Daten	48
	9.1.4	1	Durchfluss-Sensor	51
	9.1.5	5	Messstellendesign	52
	9.1.6	5	Funktionserweiterung und Schnittstellen	56
	9.2	Proz	esseinstellungen	57
	9.2.2	1	Eingänge	57
	9.2.2	2	Messumformer	57
	9.2.3	3	Einheiten	62
	9.2.4	1	Ausgänge	62
	9.2.5	5	Schnittstellen	64
	9.3	Serv	icemenü	65
	9.3.2	1	Neustart inkl. Updatefunktion	66
	9.3.2	2	Kalibriermenü	66
	9.3.3	3	USB-Menü	66
	9.3.4		Menü "Freischaltung"	68
	9.4	Men	ü "Zugriff"	68
	9.5	Men	ü "Displayeinstellungen"	69
10	D	igitale	e Schnittstellen	70
	10.1	Web	server	70
	10.2	Mod	lbus	70
	10.2	.1	Input Registers	70
	10.2	.2	Input Status	73
	10.2	.3	Einheiten	73
	10.3	M-B	us	73
	10.3	.1	Datensätze	74
	10.4 Profi		ibus/Profinet	74
	10.4	.1	Statusmeldungen und Parametrierung des Profibus-Konverters	74
	10.4	.2	Statusmeldungen des Profinet-Konverters	76

	10.4.3 Einbindung der Gerätestammdaten-Dateien		77
	10.4.4 Zuordnung der Module		77
	10.4.5	Einheiten	79
11	Konfor	Konformitätserklärung	
12	RoHS-Konformitätserklärung		81
13	Der Typenschlüssel		82

S.K.I. Schlegel & Kremer Industrieautomation GmbH Hanns-Martin-Schleyer-Str. 22 – 41199 Mönchengladbach Telefon: +49 (0) 2166/62317-0

1 Allgemeine Hinweise

1.1 Symbolerläuterung

Achtung: Warnung vor einer Gefahrenstelle (Achtung, Dokumentation beachten!) ISO 3864, No. B.3.1

Warnung: Warnung vor gefährlicher elektrischer Spannung ISO3864, No. B.3.6

1.2 Bestimmungsgemäße Verwendung

Der Auswerterechner AccuMind[®] dient der Durchflussberechnung flüssiger und gasförmiger Medien. Das Gerät darf nur zu den in dieser Anleitung vorgegebenen Zwecken eingesetzt werden. Sofern sie nicht in dieser Anleitung ausdrücklich erwähnt werden, fallen alle Änderungen am Gerät in die Verantwortung des Anwenders.

1.3 Sicherheitshinweise

Dieses Gerät hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen. Um diesen Zustand zu erhalten und um einen gefahrlosen Betrieb des Geräts sicherzustellen, beachten Sie folgende Hinweise:

- Dieses Gerät darf nur in Verbindung mit dieser Dokumentation eingerichtet und betrieben werden.
- Der einwandfreie und sichere Betrieb dieses Gerätes setzt sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung durch qualifiziertes Personal voraus.
- Das Gerät darf nur für die in der technischen Beschreibung vorgesehenen Einzelfälle und nur in Verbindung mit von der S.K.I. GmbH empfohlenen bzw. zugelassenen Fremdgeräten und -komponenten verwendet werden.
- Bei Anschluss, Montage und Betrieb sind die für Ihr Land gültigen Prüfbescheinigungen, Bestimmungen und Gesetze zu beachten.
- Dieses Gerät darf nur dann montiert und betrieben werden, wenn vorher durch qualifiziertes Personal dafür gesorgt wurde, dass geeignete Stromversorgungen (s. Typenschild!) verwendet werden, die sicherstellen, dass im normalen Betrieb oder im Fehlerfall der Anlage oder von Anlagenteilen keine gefährlichen Spannungen an das Gerät gelangen können. Deshalb sind bei unsachgemäßem Umgang mit diesem Gerät schwere Körperverletzungen und/oder erheblicher Sachschaden nicht auszuschließen.

1.4 Qualifiziertes Personal

Die Montage und Inbetriebnahme sind nur durch qualifiziertes Personal vorzunehmen. Dies sind Personen, die mit Aufstellung, Montage, Inbetriebnahme und Betrieb des Produktes vertraut sind und über die Ihrer Tätigkeit entsprechenden Qualifikation verfügen, wie z.B.:

• Ausbildung oder Unterweisung beziehungsweise Berechtigung, Geräte/Systeme gemäß dem Standard der Sicherheitstechnik für elektrische Stromkreise in Betrieb zu nehmen, zu erden und zu kennzeichnen.

- Ausbildung oder Unterweisung gemäß dem Standard der Sicherheitstechnik in Pflege und Gebrauch angemessener Sicherheitsausrüstung
- Schulung in erster Hilfe

1.5 Weitere Hinweise

Die Anleitung enthält aus Gründen der Übersichtlichkeit nicht sämtliche Detailinformationen zu allen Typen des Produkts und kann auch nicht jeden denkbaren Anwendungsfall des Betriebes oder der Instandhaltung berücksichtigen.

Bei Interesse an weiteren Informationen oder bei besonderen Problemen, die in der Anleitung nicht ausführlich behandelt werden, kann die erforderliche Auskunft direkt bei der S.K.I. GmbH angefordert werden.

Außerdem wird darauf hingewiesen, dass der Inhalt der Anleitung nicht Teil einer früheren oder bestehenden Vereinbarung, Zusage oder eines Rechtsverhältnisses ist oder diese abändern soll. Sämtliche Verpflichtungen der S.K.I. GmbH ergeben sich aus dem jeweiligen Kaufvertrag, der auch die vollständige und allein gültige Garantieregelung enthält.

Diese vertraglichen Garantiebestimmungen werden durch die Ausführungen der Anleitung weder erweitert noch beschränkt.

Der Inhalt spiegelt den technischen Stand zur Drucklegung wider. Technische Änderungen sind im Zuge der Weiterentwicklung vorbehalten.

1.6 Besondere Warnhinweise

Elektrizität: Warnung vor elektrischen Spannungen. Vor jedem Eingriff in die Verdrahtung muss die Anlage spannungsfrei geschaltet werden.

Über- bzw. Unterschreitung der zulässigen Betriebstemperatur: Es muss durch geeignete Maßnahmen sichergestellt werden, dass die zulässige Betriebstemperatur nicht überbzw. unterschritten wird.

Beschädigung: Die Komponenten dürfen keine unsachgemäßen mechanischen Belastungen, wie sie z. B. bei einem Sturz auftreten, erfahren und es dürfen keine unzulässigen Kräfte auf sie einwirken.

Unsachgemäße Montage des Gerätes: Es muss durch geeignete Maßnahmen sichergestellt werden, dass das Gerät sachgemäß montiert wird.

Korrosion: Es ist darauf zu achten, dass die Komponenten für den bestimmungsgemäßen Gebrauch genutzt und eingesetzt werden.

Sonstige Gefahren: Es ist darauf zu achten, dass die Verwendungsbestimmungen des Herstellers immer beachtet werden.

1.7 Reinigung

Der AccuMind[®] darf nur mit einem trockenen Tuch gereinigt werden.

2 Technische Daten

2.1 Anschlüsse und Schnittstellen

Elektrischer Anschluss			
Bestelloption "AC": AC-Netzteil	100 240 V AC ±10 %; 50 60 Hz ±5 %		
Bestelloption "DC": DC-Netzteil	18 30 V DC ±10 %		
Leistungsaufnahme	max. 20 VA		
Eingänge			
Analogeingänge			
Anzahl	4 (2 davon mit HART®-Fähigkeit¹)		
Messbereich	0/4 20 mA		
Prozentualer Fehler	0,1 % vom Messwert bzw. 0,05 % vom Messbe- reichsendwert		
Bürde	22 Ω (262 Ω für die HART®-fähigen Eingänge)		
Pt100-Eingänge			
Anzahl	2		
Anschlussart	3- oder 4-Leiteranschluss		
Messbereich	–200 +750 °C		
Abweichung	typ. ±0,005 K		
Speisestrom	250 μΑ		
Puls-/Frequenzeingänge			
Anzahl	2		
Schaltschwelle	0-Signal: 0 2 V; 1-Signal: 3 24 V		
Frequenzbereich	0 10 kHz; EN 1434 Kl. IB, IC, ID, IE		
Ausgänge			
Analogausgänge			
Anzahl	2		
Ausgabebereich	0/4 20 mA; Ausgangsspannung 15 V		
Prozentualer Fehler	0,1 % vom Ausgabewert bzw. 0,05 % vom Mess- bereichsendwert		
Bürde	max. 500 Ω		
Schaltausgänge			
Anzahl	3		
1 × mechanisches Relais (Schließer/Öffner)	230 V AC; 6 A		

1 × elektronisches Relais (Schließer)	40 V AC/60 V DC; 120 mA; max. Schaltfrequenz: 150 Hz
1 × elektronisches Relais (Öffner)	40 V AC/60 V DC; 120 mA; max. Schaltfrequenz: 150 Hz
Digitale Schnittstellen	
USB-Anschluss	Logging-Funktion und Updates
Ethernet-Schnittstelle	Modbus Slave TCP und Weboberfläche mit Messdatenanzeige
1. digitale Schnittstelle	Modbus Slave RTU oder Modbus Master RTU oder M-Bus (Bestelloption); (optional Anbindung eines externen Wandlers auf Profibus DP Slave oder Profinet Slave)
2. digitale Schnittstelle (optional)	Modbus Slave RTU oder Modbus Master RTU (optional Anbindung eines externen Wandlers auf Profibus DP Slave oder Profinet Slave)

Hinweise:

¹: Kompatible Differenzdruckmessumformer für die Verwendung der HART[®]-Schnittstelle:

SKI AccuP 433 Siemens SITRANS P DS III, P320, P420 Krohne OPTIBAR DP 7060 C Endress+Hauser Deltabar S PMD 75 ABB 266MST VEGA VegaDif 65, VegaDif 85 Yokogawa DPharp EJX 110A Rosemount 3051C weitere auf Anfrage

2.2 Benutzerschnittstelle

Touchdisplay

Abmessung	95 B × 53,5 H (in mm²)
Seitenverhältnis/Auflösung	16:9; 480 Pixel × 272 Pixel
Technologie	TFT-Farbdisplay mit kapazitivem Touchscreen

2.3 Gehäuse

2.3.1 Schalttafeleinbaugehäuse (Bestelloption "PM")

Material		
Displayfront	Kunststoff	
Elektronikgehäuse	Edelstahl	
Abmessungen		
Displayfront	144 B × 83 H × 14 T (in mm³)	
Elektronikgehäuse	135 B × 65 H × 119 T (in mm³)	
Schalttafelausbruch	136,5 ± 1 B × 70 ± 3 H (in mm²)	
Schutzart		
Displayfront	IP44	
Elektronikgehäuse	IP20	
Umgebungsbedingungen		
Betriebstemperatur	−20 55 °C	
Lagertemperatur	–40 85 °C	
Relative Luftfeuchte	0 95 %; nicht kondensierend	
Installationshöhe	bis zu 2000 m	

Abbildung 1: Frontansicht

Abbildung 3: Ansicht von hinten

2.3.2 Wandaufbaugehäuse (Bestelloption "WM")

Material	
Displayfront	Glas
Gehäuse	Aluminium
Abmessungen	
Gehäuse	299 B × 173 H × 60,2 T (in mm³)
Schutzart	
Gehäuse	IP65
Umgebungsbedingungen	
Betriebstemperatur	−20 55 °C
Lagertemperatur	−40 85 °C
Installationshöhe	bis zu 2000 m

.

Abbildung 4: Foto zum Wandaufbaugehäuse

Abbildung 5: Wandaufbaugehäuse mit Kabelverschraubungen

Abbildung 6: Ansicht von oben

Abbildung 7: Ansicht des Unterteils mit Befestigungsbohrungen

Abbildung 8: Ansicht mit geöffnetem Deckel

3 Verwendung

3.1 Allgemein

Der AccuMind[®] dient der Durchflussbestimmung und Auswertung von Volumenströmen flüssiger und gasförmiger Medien.

Als Primärsensoren können Wirkdruckgeber oder Volumenstromsensoren verwendet werden.

3.2 QAL1-Anwendung (Bestelloption "QL")

Es gibt den AccuMind[®] als spezielle Version mit der Betriebsart "QL" für QAL1-Anwendungen (vgl. Abschnitt 13).

Der AccuMind[®] für QAL1-Anwendungen dient der Durchflussbestimmung in einer QAL1-zertifizierten Messeinrichtung mit SDF-Sonden.

Einzelheiten zur Verwendung der Messeinrichtung i.V.m. dem AccuMind[®] sind der "Kurzanleitung AccuFlo[®]QAL" in der jeweils gültigen Version zu entnehmen.

Der AccuMind[®] für QAL1-Anwendung hat eine eigene Firmware. Die QAL-Funktionalität lässt sich nicht über das Menü ein- oder ausschalten.

Hinweis: Wenn es in dieser Anleitung QAL-spezifische Abweichungen in der Beschreibung des AccuMind[®] gibt, wird der betreffende Absatz wie folgt gekennzeichnet:

Bei QAL1-Anwendung

Erläuterung der Abweichung.

3.3 Anwendung mit Wirkdruckgeber

Die Durchflussbestimmung für Wirkdruckgeber geschieht im AccuMind[®] gemäß ISO 5167 ausgehend von folgendem Zusammenhang für den Massenstrom:

$$q_m = \frac{C}{\sqrt{1 - \beta^4}} \cdot \varepsilon \cdot \frac{\pi}{4} \cdot d^2 \cdot \sqrt{2 \cdot \Delta p \cdot \rho}$$

Größe	Erläuterung
q _m	Massenstrom
С	Durchflusskoeffizient
β	Durchmesserverhältnis
3	Expansionszahl
d	Innendurchmesser der Engstelle
Δр	Differenz- bzw. Wirkdruck
ρ	Dichte des Mediums vor der Engstelle

Wahlweise kann die Berechnung auch gemäß AGA-3 erfolgen.

3.4 Anwendung mit Volumenstromsensor

Der Massenstrom für einen Volumenstromsensor ergibt sich aus:

$$q_m = q_V \cdot \rho$$

Größe	Erläuterung
q _m	Massenstrom
q_{V}	Volumenstrom
ρ	Dichte des Mediums

Wahlweise kann ein AGA-7-Volumenstromsensor eingesetzt werden.

3.5 Messstoffe

Der AccuMind[®] unterstützt die folgenden Messstoffe:

Messstoff/Ausprägung	Erläuterung
Gas	Berechnung von Gaseigenschaften nach div. Zustandsgleichungen: Idealgas, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson.
	Berechnung nach AGA-8 DC/GC, SGERG 88 und AGA-NX19
	Zusätzlicher vereinfachter Modus mit Abfrage einer Normdichte
Heißdampf	Berechnung der Eigenschaften gemäß IAPWS-97 Temperatur- und Druckmessung erforderlich

,	
Sattdampf (p)	Berechnung der Eigenschaften gemäß IAPWS-97 Druckmessung erforderlich
Sattdampf (T)	Berechnung der Eigenschaften gemäß IAPWS-97 Temperaturmessung erforderlich
Wasser	Berechnung der Eigenschaften gemäß IAPWS-97
Wärmeträgeröl	Berechnung der Eigenschaften abhängig von der Öl-Temperatur anhand von hinterlegten Wertetabellen. Import-/Exportfunktion für ein benutzerdefiniertes Öl
Vereinfachte Flüssigkeit	Angabe einer konstanten Dichte

Messstoff/Ausprägung Erläuterung

3.6 Notwendige Sensoren

Wenn der AccuMind[®] parametriert bestellt wurde, gibt das Parametrierblatt darüber Auskunft, welche Sensoren an welchen Anschlüssen anzuschließen sind.

Bei einem unparametrierten AccuMind[®] wird anhand der nachfolgenden Beschreibung bestimmt, welche Sensoren notwendig sind. Der Anschluss dieser Sensoren ergibt sich dann gemäß Abschnitt 5.

Der durch einen Wirkdruckgeber erzeugte Differenzdruck Δp wird über einen Differenzdruck-Messumformer aufgenommen und vom AccuMind[®] verarbeitet.

Ein Volumenstromsensor gibt den ermittelten Volumenstrom q_V direkt an den AccuMind[®] weiter.

Die Dichtebestimmung erfolgt i.d.R. anhand der Temperatur und des Druckes des Mediums. Für die Temperatur T1 und den Druck p können Sensoren verwendet oder es können Festwerte parametriert werden.

Für jede zu messende Größe wird ein Sensor benötigt. Die folgende Tabelle zeigt, welche Anschlussmöglichkeiten für die einzelnen Messgrößen bestehen und wann der jeweilige Sensor NICHT benötigt wird:

Messgröße	Anschlussmöglichkeiten	nicht nötig bei
Differenzdruck Δp^1	Analogeingänge Ain1 bis Ain4 (wenn der Differenzdruck über HART® ermittelt werden soll, nur Ain1 und Ain2); vgl. 5.4.2	Anwendung mit Volumen- stromsensor
Volumenstrom $q_{\rm V}$	Analogeingänge Ain1 bis Ain4; vgl. 5.4.2 oder Frequenz-/Pulseingang 1; vgl. 5.4.3	Anwendung mit Wirkdruckgeber
Temperatur T1	Analogeingänge Ain1 bis Ain4; vgl. 5.4.2 oder 1. Pt100; vgl. 5.4.1	Festwert Sattdampf (p) Vereinf. Flüssigkeit
Temperatur T2 ²	Analogeingänge Ain1 bis Ain4; vgl. 5.4.2 oder 2. Pt100; vgl. 5.4.1	Festwert keine Wärmemengenanwendung
Druck p	Analogeingänge Ain1 bis Ain4; vgl. 5.4.2	Festwert Sattdampf (T) Flüssigkeiten ³

Hinweise:

¹: Für den Differenzdruck können auch zwei Messumformer angeschlossen werden. Einer deckt dann den unteren Bereich und der andere den oberen ab (Split-Range-Anwendung).

²: Für Wärmemengenberechnungen wird eine 2. Temperatur (T2) benötigt. Die Bestimmung der 1. Temperatur (T1) findet immer an der Position der eigentlichen Durchflussmessung statt. Die Bestimmung der 2. Temperatur (T2) geschieht an der Position im Rohrleitungsverlauf, wo eine Wärmezufuhr oder -abgabe stattfindet. Die Wärmemenge wird vom AccuMind[®] betragsmäßig ausgegeben (unabhängig davon, ob gekühlt oder geheizt wird). Die 2. Temperatur kann auch als Festwert parametriert werden. Standardwert ist dann 0 °C.

³: Bei Wasser kann wahlweise ein Drucksensor zum Einsatz kommen, ansonsten wird mit einem parametrierbaren Auslegungsdruck die Dichte bestimmt

Bei QAL1-Anwendung							
Messgröße	Anschlussmöglichkeiten	nicht nötig bei					
Differenzdruck Δp	Analogeingang Ain1; vgl. 5.4.2	-					
Temperatur T1	Analogeingang Ain4; vgl. 5.4.2 oder 1. Pt100; vgl. 5.4.1	Festwert					
Druck p	Analogeingang Ain3; vgl. 5.4.2	Festwert					

3.7 Funktionserweiterungen

Der AccuMind[®] kann bestimmte externe Komponenten ansteuern und damit die Funktionalität erweitern. Einzelheiten dazu siehe Abschnitt 8.

4 Montage des AccuMind®

4.1 Schalttafeleinbaugehäuse (Bestelloption "PM")

Diese Version des AccuMind[®] wird standardmäßig in einem Schalttafelausschnitt (Maße siehe 2.3) montiert.

Zur Montage werden die beiden Halterungen am Rand abgenommen indem sie nach vorne gedrückt werden. Anschließend wird das Gerät von vorne in die Schalttafel eingeschoben. Danach werden die Halterungen wieder eingesetzt und die Schrauben angezogen. Es ist darauf zu achten, dass die mitgelieferte Dichtung fest zwischen Displayeinheit und Schalttafel sitzt.

4.2 Wandaufbaugehäuse (Bestelloption "WM")

Diese Version des AccuMind[®] wird über die vier dafür vorgesehenen Befestigungsbohrungen (vgl. Abbildung 7) z.B. mit einer Wand verschraubt.

An der linken Seite befindet sich ein Abdeckprofil, welches zur Seite geklappt werden kann. Darunter befinden sich zwei Sicherungsschrauben, welche den Deckel des Gehäuses mit dem Unterteil verbinden. Nach dem Lösen der beiden Schrauben lässt sich der Deckel wegklappen (vgl. Abbildung 8).

Hinweise:

Die Schutzart des Gehäuses ist nur gewährleistet, wenn die Sicherungsschrauben nach dem Schließen des Deckels wieder verschraubt sind.

Die linke Kabelverschraubung dient gleichzeitig dem Druckausgleich des Gehäuses. Sie darf nicht durch eine Standard-Kabelverschraubung ersetzt werden.

5 Klemmenbelegung und elektrischer Anschluss

5.1 Anschlüsse am AccuMind®

Die Klemmen/Anschlüsse am AccuMind[®] lassen sich in vier Bereiche unterteilen. Diese sind in Abbildung 9 und Abbildung 10 farblich hervorgehoben:

Bereich	Farbe
Netzteilklemme (Art der Klemme: Schraubklemme; max. Leitungsquerschnitt: 3,3 mm ²)	orange
Hauptklemmleiste (Art der Klemme: Federzugklemme; max. Leitungsquerschnitt: 1,3 mm²)	blau
Ethernet-Anschluss/USB-Buchse	grün
D-Sub-Anschluss (optional beim Schalttafeleinbaugehäuse, nicht verfügbar beim Wandaufbaugehäuse)	rot

Die Klemmen für das Netzteil und die Hauptklemmleiste sind steckbar. Die Netzteilklemme ist zusätzlich mit Schrauben gesichert.

5.1.1 Schalttafeleinbaugehäuse (Bestelloption "PM")

Die Klemmen/Anschlüsse finden sich beim Schalttafeleinbaugehäuse auf der Rückseite.

Abbildung 9: Rückseite des AccuMind®

5.1.2 Wandaufbaugehäuse (Bestelloption "WM")

Die Klemmen/Anschlüsse befinden sich beim Wandaufbaugehäuse im Inneren. Sie sind nach dem Öffnen des Deckels zugänglich.

Abbildung 10: Anschlüsse im Inneren des Wandaufbaugehäuses

5.1.3 Wandaufbaugehäuse mit dritten Analogausgang (Bestelloption "WMA")

Bei der Bestelloption "WMA" befindet sich im Innern des Wandaufbaugehäuses ein Trennverstärker, welcher einen dritten Analogausgang bereitstellt. Dieser Ausgang gibt das Analogeingangssignal, welches am 3. Analogeingang anliegt, unverändert weiter. Zur Verdrahtung vgl. 5.4.5.

5.2 Typenschild

Abbildung 11 zeigt beispielhaft ein Typenschild des AccuMind[®]. Das Typenschild befindet sich beim Schalttafeleinbaugehäuse auf der Oberseite, beim Wandaufbaugehäuse ist es nach dem Öffnen des Deckels sichtbar.

Auf dem Typenschild ist die Seriennummer ("SN") und das Produktionsjahr ("Yr. of prod.") des AccuMind® ablesbar. Weiterhin sind die grundlegenden technischen Spezifikationen zu finden. Die Belegung der Klemmen lässt sich der aufgedruckten Tabelle entnehmen. Weitere Informationen zum Anschluss sind in den folgenden Abschnitten zu finden.

SN: 20061545 Yr. of prod.: 2020

www.ski-gmbh.com

(3	2' RTD/I 8- or 4	nd Pt100 4-wire) e)	2 nd A HA	nalog RT ab	Input ility	4 th A	nalog	Input	2' Swite Ing	nd ching out	2 Ana O	nd alog ut		Mod c M-E	lbus or Bus		$T_{amb} = -20 \dots 55 \ ^{\circ}C$
A	a	в	b optional	GND	Signal Input	+24V	GND	Signal Input	+24V	Input +	Input –	Output –	Output +	+		GND	n.c.	50 60 Hz
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	20 VA _{max}
ا (3	1 RTD/I 8- or 4	st Pt100 4-wire) e)	1 st A HA	nalog RT ab	Input ility	3 rd A	nalog	Input	1 Swite Ing	st ching out	1 Ana O	st alog ut	1 Elect Sw	st tronic itch	2 Elect Swi	nd ronic itch	Power Supply Terminal 6 Relay NO
A	es	В	b optional	GND	Signal Input	+24V	GND	Signal Input	+24V	Input +	Input –	Output –	Output +	Output +	Output –	Output +	Output –	 5 Relay COM (6 A/250 V) 4 Relay NC 3 AC Supply N 2 AC Supply PE 1 AC Supply L
11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	,

Abbildung 11: Typenschild des AccuMind®

5.3 Netzteilklemme mit Relais

Netzteilklemme bei AC-Anschluss		Netzteilklemme bei DC-Anschluss		
Pin	Funktion		Funktion	
1	L	1	nicht verwendet	
2	PE	2	GND	
3	Ν	3	L+	
4	Relais NC	4	Relais NC	
5	Relais COM	5	Relais COM	
6	Relais NO	6	Relais NO	

Dem Typenschild ist zu entnehmen, ob es sich um einen AccuMind[®] für AC-Betrieb (Wechselspannung) oder DC-Betrieb (Gleichspannung) handelt. Es gelten ausschließlich die Angaben auf dem Typenschild des Gerätes.

Der Anschluss der Hilfsspannung erfolgt über die Netzteilklemme (bei der Bestelloption "WMA" ist die Hilfsspannung zur Netzteilklemme vorverdrahtet; vgl. 5.4.5). Zur Parametrierung des Relais R vgl. 9.2.4.

5.4 Hauptklemmleiste

5.4.1 Anschluss der Pt100

1. Pt100		2. Pt100			
Pin Funktion		Pin	Funktion		
11	Anschluss A	31	Anschluss A		
12	Anschluss a	32	Anschluss a		
13	Anschluss B	33	Anschluss B		
14	Anschluss b (optional)	34	Anschluss b (optional)		

Die Pt100-Temperaturwiderstände lassen sich in 3- oder 4-Leiterschaltung anschließen.

Für das 1. Pt100 ergibt sich die 3-Leiterschaltung wie in Abbildung 12 dargestellt. Die 4-Leiterschaltung wird in Abbildung 13 illustriert. In Klammern sind die Klemmenbelegungen für das 2. Pt100 angegeben.

Sollte der Temperatursensor mit einem Messumformer ausgestattet sein, erfolgt der Anschluss wie in 5.4.2 beschrieben.

Zur Parametrierung der Temperatureingänge vgl. 9.2.2.4.

Abbildung 13: 4-Leiterschaltung

1. An	. Analogeingang (Ain1); HART [®] -fähig 2. Analogeingang (Ain2); HART [®] -fähig		alogeingang (Ain2); HART®-fähig	
Pin	Funktion	Pin	Funktion	
15	MU-GND (für aktive MU)	35	MU-GND (für aktive MU)	
16	Signaleingang für den 1. Analogeingang	36	Signaleingang für den 2. Analogeingang	
17	MU-Speisung +24 V (für passive MU)	37	MU-Speisung +24 V (für passive MU)	
3. Analogeingang (Ain3)		4. Analogeingang (Ain4)		
3. An	alogeingang (Ain3)	4. An	alogeingang (Ain4)	
3. An Pin	alogeingang (Ain3) Funktion	4. Ana Pin	alogeingang (Ain4) Funktion	
3. An Pin 18	alogeingang (Ain3) Funktion MU-GND (für aktive MU)	4. An Pin 38	alogeingang (Ain4) Funktion MU-GND (für aktive MU)	
3. An Pin 18 19	alogeingang (Ain3) Funktion MU-GND (für aktive MU) Signaleingang für den 3. Analogeingang	4. An Pin 38 39	alogeingang (Ain4) Funktion MU-GND (für aktive MU) Signaleingang für den 4. Analogeingang	

5.4.2 Messumformer (MU) an den Analogeingängen

Zur Zuordnung der Eingänge zu den Messgrößen vgl. 9.2.1. Zur Parametrierung der Messumformereinstellungen vgl. 9.2.2.

Bei QAL1-Anwendung
Feste Zuordnung der Analogeingänge
Ain1: Differenzdruckmessumformer
Ain2: ext. Auslösung (vgl. 5.8.2)
Ain3: Drucktransmitter
Ain4: Temperaturtransmitter

Wenn die Temperatur mit einem Pt100 (ohne Messumformer) bestimmt wird, erfolgt der Anschluss gemäß 5.4.1.

Passive Messumformer werden mit ihrer Plus-Klemme an den +24-V-Speiseausgang des jeweiligen Analogeinganges angeschlossen. Die Minus-Klemme wird an den jeweiligen Signaleingang angeschlossen. Abbildung 14 zeigt das beispielhaft für einen Differenzdruckmessumformer am 1. Analogeingang.

Abbildung 14: Anschluss eines passiven Messumformers

Aktive Messumformer werden mit ihrer Plus-Klemme an den Signaleingangskontakt des jeweiligen Analogeinganges angeschlossen. Die Minus-Klemme wird an den jeweiligen GND-Kontakt angeschlossen. Abbildung 15 zeigt das beispielhaft für einen Druckmessumformer am 3. Analogeingang. "HE" steht dabei für die Hilfsenergie, mit welcher der Messumformer gespeist wird.

Abbildung 15: Anschluss eines aktiven Messumformers

5.4.3 Schalt- und Frequenzeingänge

1. Schalt-/Frequenzeingang		2. Schalt-/Frequenzeingang				
Pin	in Funktion		Funktion			
21	Anschluss +	41	Anschluss +			
22	Anschluss –	42	Anschluss –			

Diese Eingänge dienen z.B. dem Anschluss eines Volumenstromsensors (1. Eingang; vgl. 9.2.2.2), wenn dieser einen Frequenzausgang besitzt und für AGA-7-Sensoren (vgl. 9.2.2.3). Außerdem werden sie beim Anschluss von Funktionserweiterungen verwendet.

5.4.4 Anschluss der Analogausgänge

1. Analogausgang			2. Analogausgang		
Pin	Funktion	Pin	Funktion		
23	Anschluss –	43	Anschluss –		

Über die Analogausgänge können Prozessgrößen als 0/4...20-mA-Signal ausgegeben werden. Zur Parametrierung der Ausgänge vgl. 9.2.4.

5.4.5 Dritter Analogausgang bei Bestelloption "WMA"

Nachfolgend ist die Verdrahtung des bei Bestelloption "WMA" verbauten Trennverstärkers gezeigt. Die durchgezogen gezeichneten Komponenten sind Teil der Bestelloption. Der Trennverstärker und die zusätzliche Klemmleiste befinden sich innerhalb des Wandaufbaugehäuses. Die Komponenten sind ab Werk verdrahtet. Die gestrichelt gezeichnete Verbindung illustriert den Anschluss eines externen Druckmessumformers. Dieser Messumformer wird vom AccuMind[®] mit 24 V gespeist. Das analoge Signal (4 ... 20 mA) des Messumformers steht für den AccuMind[®] am 3. Analogeingang (Ain3) und extern über die Klemmen 9 (+) und 10 (–) zur Verfügung.

Abbildung 16: Verdrahtungsoption "WMA" bei AC-Anschluss

Abbildung 17: Verdrahtungsoption "WMA" bei DC-Anschluss

Das erweiterte Typenschild zeigt die Belegung der Klemmen. Insbesondere die Art der Versorgungsspannung ist zu beachten. Vgl. Abbildung 18.

L N PE	Power 90 2	+ - PE	Power 20 3	Supply 0 V DC	
7	+24 V	Pressure	7	+24 V	Pressure
8	Input –	Input	8	Input –	Input
9	Output +	Pressure Signal	9	Output +	Pressure Signal
10	Output –	Output	10	Output –	Output

Abbildung 18: Erweiterte Typenschilder AC- bzw. DC-Anschluss bei Bestelloption "WMA"

5.4.6 Elektronische Relais

1. elektronisches Relais (NO) "Schaltausgang S1"		2. elektronisches Relais (NC) "Schaltausgang S2"	
Pin	Funktion	Pin	Funktion
25	Anschluss + (COM)	27	Anschluss + (COM)
26	Anschluss – (NO)	28	Anschluss – (NC)

Der AccuMind[®] bietet zwei elektronische Relais. Diese dienen z.B. der Ausgabe von Statussignalen oder als Frequenz-/Impulsausgänge. Zur Parametrierung der elektronischen Relais vgl. 9.2.4. Abbildung 19 zeigt eine Anschlussempfehlung für das 1. elektronische Relais. Der Widerstand R sollte dabei 5 bis 10 k Ω betragen. Das 2. elektronische Relais wird analog dazu angeschlossen.

Abbildung 19: Anschlussempfehlung für elektronisches Relais 1

5.4.7 Modbus/M-Bus (Seriell 1)

Pin Funktion

45 Anschluss +

46 Anschluss -

Pin Funktion

47 Anschluss GND

Der AccuMind[®] bietet eine Schnittstelle für Modbus/M-Bus. Die Belegung der Schnittstelle muss bei der Bestellung ausgewählt werden ("1. Schnittstelle", vgl. Abschnitt 13). Zur Parametrierung der Schnittstelle vgl. 9.2.5.

5.5 Ethernetschnittstelle

Der AccuMind[®] bietet eine Ethernetschnittstelle. Darüber kann auf den Webserver des AccuMind[®] zugegriffen werden und es wird Modbus TCP zur Verfügung gestellt. Eine Standard-Ethernetleitung wird für den Anschluss benötigt. Zur Parametrierung der Schnittstelle vgl. 9.2.5.

5.6 D-Sub-Anschluss (Seriell 2)

Pin	Funktion
5	Anschluss GND
8	Anschluss +
9	Anschluss –

Für den optionalen D-Sub-Anschluss ("2. Schnittstelle", vgl. Abschnitt 13) wird eine serielle Standardleitung mit 1:1-Beschaltung benötigt. Zur Parametrierung der Schnittstelle vgl. 9.2.5.

5.7 Schnittstellenkonverter für Profibus/Profinet

Für die Kommunikation über Profibus DP Slave bzw. Profinet kommt ein Schnittstellenkonverter für die erste oder zweite serielle Schnittstelle des AccuMind[®] zum Einsatz.

Bei der Verwendung der ersten Schnittstelle (Option PB/PN für "1. Schnittstelle", vgl. Abschnitt 13) wird ein entsprechender D-Sub-Steckverbinder mit Schraubanschluss zur Herstellung einer Verbindungsleitung mitgeliefert

Bei der Verwendung der zweiten Schnittstelle (Option PB/PN für "2. Schnittstelle", vgl. Abschnitt 13) wird eine entsprechende Verbindungsleitung (Länge ca. 2 m) mitgeliefert.

5.7.1 Technische Daten des Schnittstellenkonverters

Technische Spezifikationen

Spannungsversorgung	24 V DC ±10 %
Stromaufnahme	max. 300 mA, typisch 100 mA
Abmessungen	27 B × 120 H × 75 T (in mm³)
Schutzart	IP20
Befestigung	Hutschiene TH 35
Betriebstemperatur	0 55 °C
Lagertemperatur	–40 85 °C
Relative Luftfeuchte	0 95 %; nicht kondensierend
Installationshöhe	bis zu 2000 m

5.7.2 Elektrischer Anschluss des Schnittstellenkonverters

Der Schnittstellenkonverter wird mit der Spannungsversorgung und dem AccuMind[®] verbunden. Siehe dazu Abbildung 20.

Abbildung 20: Schnittstellenkonverter (Ansicht von unten)

Die Verbindung zwischen Schnittstellenkonverter und Leitstelle erfolgt über die an der Front befindliche Buchse: D-Sub-Buchse für die Profibus-Ausführung und RJ45-Buchse für die Profinet-Variante.

5.8 Anschluss einer LSE-HD (Funktionserweiterung)

5.8.1 Allgemeine Verdrahtung

Für die Anbindung der optionalen Luftspüleinrichtung LSE-HD (Optionen "LS"/"LA", vgl. Abschnitt 13) ergibt sich der Anschluss gemäß Abbildung 21. Die übrigen elektrischen Anschlüsse ergeben sich unverändert gemäß den vorherigen Abschnitten.

Abbildung 21: Verdrahtungsplan bei Anschluss einer LSE

5.8.2 Externe Auslösung

Wenn eine externe Auslösung des Spülzyklus gewünscht ist, wird der Anschluss dafür gemäß Abbildung 22 realisiert. Der Widerstand R muss dabei 5 bis 10 k Ω betragen.

37	└─── <u>└</u> ──∕─┐
36	R

Abbildung 22: Beschaltung für die externe Auslösung der LSE

Die beiden Klemmen 36 und 37 kommen standardmäßig zum Einsatz. Die Auslösung ist dann für den 2. Analogeingang Ain2 parametriert. Wahlweise kann auch ein anderer Analogeingang verwendet werden. Es sind dann die Klemmen für MU-Speisung und Signaleingang des jeweiligen Analogeingangs zu verwenden (vgl. 5.4.2) und die Parametrierung ist zu ändern (vgl. 9.2.1).

Bei QAL1-Anwendung

Die externe Auslösung ist fest für Ain2 parametriert.

5.9 Anschluss eines AccuFlo®Zero (Funktionserweiterung)

Der Anschluss des optionalen Nullpunktabgleichs AccuFlo[®]Zero ergibt sich aus der "Betriebs- und Montageanleitung AccuFlo[®]Zero". Eine externe Auslösung des Nullpunktabgleichs erfolgt wie unter 5.8.2 beschrieben.

6 Betrieb

Wenn der AccuMind[®] vorkonfiguriert bestellt wurde, zeigt er nach der Verbindung mit allen notwendigen Sensoren und dem anschließenden Herstellen der Spannungsversorgung des Gerätes die jeweiligen Prozesswerte an.

Die allgemeine Bedienung des Gerätes wird in 6.1 beschrieben.

Die Anzeige der Prozesswerte kann gemäß 6.2 angepasst werden.

Sollten bei der Inbetriebnahme nicht alle elektrischen Verbindungen hergestellt worden sein, gibt der AccuMind[®] entsprechende Fehlermeldungen aus. Vgl. hierzu Abschnitt 7.

Die Bedienung von Funktionserweiterungen (z.B. der automatischen Luftspüleinrichtung LSE) wird in Abschnitt 8 erläutert.

Sollte der AccuMind[®] unkonfiguriert bestellt worden sein oder soll eine Anpassung der Parameter vorgenommen werden, geschieht das gemäß Abschnitt 9.

Erläuterungen zur Verwendung der digitalen Schnittstellen sind im Abschnitt 10 zu finden.

Hinweis: Änderungen an den Einstellungen werden nicht automatisch gespeichert. So besteht die Möglichkeit, testweise eine neue Parametrierung zu nutzen und durch einen Neustart oder einen Druck auf "Konfig laden" (vgl. 9.3) zur alten Parametrierung zurückzukehren. Dauerhaft werden die Änderungen über das Service-Menü übernommen ("Konfig. speichern"; vgl. 9.3).

6.1 Allgemeine Bedienung

Dem Nutzer stehen im Grundzustand fünf verschiedene Displayseiten (Prozessbildschirme) zur Verfügung. Es gibt Prozessbildschirme mit einem, zwei, drei, fünf und sechs Feldern zur Darstellung jeweils eines Ergebnisses (Display-Kacheln; vgl. Abbildung 23).

Abbildung 23: Prozessbildschirm mit drei Display-Kacheln

Der AccuMind[®] wird mittels Touchdisplay bedient. Am unteren Displayrand werden kontextabhängig Schaltflächen eingeblendet.

	Schalthachen
\leftarrow	Die vorherige Displayseite anzeigen
\rightarrow	Die nächste Displayseite anzeigen
\$	Das Parametrier-/Sonderfunktionsmenü aufrufen (vgl. 6.4)

Schaltflächen

Schaltflächen

6.2 Rechtemanagement/Authentifizierung

Alle Bedienoperationen, die über das Weiterschalten der Prozessbildschirme (und das Anzeigen von Fehlermeldungen, vgl. 7.2) hinausgehen, benötigen die Eingabe eines Codes.

Hinweis: Die Codes können geändert werden. Vgl. dazu 9.4.

Dabei gibt es drei Ebenen mit voreingestellten Codes. Eine höhere Ebene schließt dabei die Rechte der niedrigeren Ebenen mit ein.

Ebene	Code	Zugriffsmöglichkeiten
1	8941	Bedienung: Zähler zurücksetzen, Nullpunktabgleich bzw. Spülzyklus auslö- sen, Parametrierung anzeigen
2	5624	Einfache Einstellungen: Prozesseinstellungen ändern, Display-Kacheln anpassen, Uhrzeit stellen, Konfiguration speichern/laden, Werkskonfigu- ration laden
3	9376	Erweiterte Einstellungen: Kalibrierung, Änderung der Basiseinstellungen im Rahmen der freigeschalteten Funktionalität des AccuMind [®]

Sobald es erforderlich ist, erfolgt die Abfrage des Codes (vgl. Abbildung 24). Ein automatisches Ausloggen erfolgt 10 Minuten nach der letzten Benutzereingabe.

Abbildung 24: Code-Abfrage

6.3 Anpassung der Prozesswertdarstellung

Die dargestellte Größe einer Display-Kachel lässt sich ändern, indem auf die betreffende Kachel gedrückt wird. Für jede Kachel können nun diverse Eigenschaften angepasst werden (vgl. Abbildung 25).

	SKI
Anzeige	q _V
Maßeinheit	m³/h
Nachkommastellen	1

Abbildung 25: Übersichtsseite zur Display-Kachel

Ein Druck auf eine Eigenschaftszeile öffnet eine weitere Unterseite mit der Abfrage der jeweiligen Größen (für den Wert "Anzeige" gibt es zuvor noch eine Abfrage der Kategorie, vgl. Abbildung 26). Im Beispiel wurde aus der Kategorie "Prozesswerte" der "Volumenstrom q_v " als Anzeigewert ausgewählt. Ein Druck auf die Kategorie "Bereinigen" erzeugt eine leere Kachel.

Kategorie	SK Anzeige		SKI	
Kontrollwerte	Zähler	Massestrom q _m	Volumenstrom q_V	
Prozesswerte	Zeit			
Bereinigen		Normvolumenstrom q_{Vn}	Geschwindigkeit v	
ŝ		ŝ	\checkmark \rightarrow	

Abbildung 26: Abfrage der Kategorie und des gewünschten Anzeigewertes

Jeweils aktuell ausgewählte Werte sind blau hinterlegt. Ein Druck auf einen anderen Wert wählt diesen aus. In Abbildung 27 ist die Abfrage der Maßeinheiten und der Nachkommastellen dargestellt.

Maßeinheit	Nachkommastellen			Min: 0 Max: 5	
m³/s	m³/h	1	2	3	1
		4	5	6	
m³/min	barrel/h	7	8	9	-
			0	-	•
ŝ	\checkmark \rightarrow		ŝ		

Abbildung 27: Abfrage der Maßeinheit und der Nachkommastellen

6.4 Die Menüauswahl des AccuMind®

Nach einem Druck auf das Zahnradsymbol wird die Menüauswahl des AccuMind[®] aufgerufen. Von dieser kann man in die entsprechenden Untermenüs verzweigen (vgl. Abbildung 28). Dort können Funktionserweiterungen aufgerufen werden (vgl. Abschnitt 8) und die Parameter des AccuMind[®] können angezeigt bzw. geändert werden (vgl. Abschnitt 9).

Abbildung 28: Menüauswahl

6.5 Bedienung der Untermenüs

Die Untermenüs sind in einer Baumstruktur aufgebaut. Am rechten Displayrand sind zur Steuerung entsprechende Schaltflächen angeordnet:

	Schaltflächen
~	Nach oben scrollen
~	Nach unten scrollen
_	Die aufgeklappte Baumstruktur einklappen

Werte, die in der Baumstruktur rechts ein [+] bzw. [-] haben, dienen dem Aus-/Einklappen der Baumstruktur-Zweige. Beim Ausklappen der Baumstruktur wird der Displayinhalt so verschoben, dass der auszuklappende Zweig ganz oben steht. Die Werte in den Zweigen erhalten je tieferer Ebene zwei führende Punkte (vgl. Abbildung 29).

Abbildung 29: Aufgeklappte Baumstruktur

Um einen Wert anzupassen, wird die entsprechende Zeile angeklickt. Der Wert wird dann umgeschaltet (wenn es für die betreffende Einstellung nur zwei Möglichkeiten gibt) oder es öffnet sich eine Auswahlseite mit mehreren Auswahlkacheln bzw. eine Eingabemaske für die direkte Werteingabe (analog zur Anpassung der Prozesswertdarstellung; vgl. Abbildung 27).

Darüber hinaus gibt es auch Zeilen, die eine Funktion (z.B. einen Spülprozess) auslösen.

Hinweis: Wenn der Text eines Zweiges der Baumstruktur grau dargestellt ist, lässt sich der entsprechende Parameter nicht ändern. Das tritt dann auf, wenn eine andere Option dazu führt, dass dieser Parameter nicht verändert werden darf. Wenn der Text auf einer Auswahlkachel grau dargestellt ist, kann die entsprechende Option nicht ausgewählt werden. Entweder ist die Funktion durch eine andere Option deaktiviert oder die jeweilige Funktion ist nicht freigeschaltet (zur Freischaltung von Funktionen vgl. 9.3.4).

7 Ausgabe von Warnungen und Fehlern

7.1 Allgemein

Der AccuMind[®] signalisiert vom Normzustand abweichende Zustände in seinem Display, über die elektronischen/das mechanische Relais, die digitalen Schnittstellen und/oder die Analogausgänge.

7.2 Displayanzeige

Abbildung 30: Hinweistext über den Anzeigekacheln

Wie in Abbildung 30 zu sehen, erscheinen Warnungen bzw. Fehlermeldungen über den Display-Kacheln. Wenn es nur eine Meldung gibt, wird diese direkt angezeigt (im Beispiel: "Konfigurationsänderung"). Treten mehrere auf, erfolgt entsprechend der Hinweis "Mehrere Meldungen!". Ein Druck auf den Meldungstext öffnet eine Übersichtsseite mit dem Zeitpunkt des Auftretens der Warnungen bzw. Fehler (vgl. Abbildung 31). Warnungen werden dabei gelb und Fehler rot ausgegeben.

Abbildung 31: Übersichtsseite für Meldungen

Hinweis: Wenn der Grund für den entsprechenden Hinweis wegfällt, verschwindet auch die entsprechende Meldung.

7.3 Warnungen im Display

Der AccuMind[®] gibt Warnungen im Display aus. Die folgende Tabelle listet die möglichen Warnungen auf:

Warnung	Erläuterung
Konfigurationsänderung	Es liegen ungespeicherte Änderungen vor. Sollen diese übernom- men werden, müssen sie gespeichert werden (vgl. 9.3).
Schleichmenge	Die parametrierte Kleinstmenge ist unterschritten. Der Durchfluss wird auf 0 gesetzt.
AinX: Strom zu nied- rig/hoch	An Stromeingang AinX ist der Stromwert außerhalb des regulären Messbereiches (kleiner als der normale Unterbereich oder größer als der normale Überbereich), aber noch nicht in einem Fehlerbe- reich. Es sollte überprüft werden, ob die Grenzen des Messumfor- mers angepasst werden können.
	Strombereiche für Warnungen bei Signaleingang 4 20 mA: 3,65 mA < AinX < 3,85 mA und 20,45 mA < AinX < 20,95 mA
	Strombereich für Warnung bei Signaleingang 0 20 mA: 20,45 mA < AinX < 20,95 mA
	Hinweis: Eine Hysterese von ±0,02 mA findet Anwendung.
Sattdampfbetrieb	Relevant für den Messstoff "Heißdampf". Wenn für den aktuellen Druckwert die Mindesttemperatur für den Dampfzustand unter- schritten wird, rechnet der AccuMind [®] im Modus "Sattdampf (p)" weiter (vgl. 9.1.3.2)

7.4 Fehlermeldungen im Display

Der AccuMind[®] gibt Fehlermeldungen im Display aus. Die folgende Tabelle listet die möglichen Fehlermeldungen auf:

Fehler	Erläuterung
Drahtbruch/Kurzschluss RTDX	An Pt100-Eingang AinX liegt ein Fehler vor. Die Verdrahtung ist zu überprüfen. Wenn kein Rückfallwert ¹ parametriert ist, wird die Berechnung eingestellt.
Keine X-Quelle	Für eine der Größen "X" wurde kein Eingang zugewiesen. "X" kann stehen für: "dp1", "dp2", "qV", "T1", "T2" oder "p" Wenn kein Rückfallwert ¹ parametriert ist bzw. für die betreffende Größe kein Rückfallwert parametrierbar ist, wird die Berechnung eingestellt. Es muss für die jeweilige Größe ein Eingang parame- triert werden (vgl. 9.2.1).
AinX: Drahtbruch	Es wird am betreffenden Signaleingang AinX kein Messumformer erkannt bzw. der Strom vom Messumformer ist zu gering (AinX ≤ 3,65 mA ²). Die Verdrahtung ist zu überprüfen. Wenn kein Rückfall- wert ¹ parametriert ist, wird die Berechnung eingestellt. Dieser Fehler kann bei Signaleingang 0 20 mA nicht erkannt werden.
AinX: MU de- fekt/Kurzschluss	Der Messumformer an Signaleingang AinX gibt einen zu hohen Strom aus (AinX ≥ 20,95 mA ²) oder es liegt ein Kurzschluss vor. Die Verdrahtung und/oder der Messumformer sind zu überprüfen. Wenn kein Rückfallwert ¹ parametriert ist, wird die Berechnung eingestellt.

Fehler	Erläuterung
AinX: Keine HART-Komm.	Mit dem Messumformer an Signaleingang AinX kann keine HART [®] - Kommunikation aufgebaut werden. Die Messwerte werden in die- sem Fall über das Stromsignal ermittelt. Wenn der Messumformer nicht HART [®] -fähig ist, sollte die Signalquelle des Analogeingangs entsprechend umgestellt werden (vgl. 9.2.2.1)
Differenzdruck größer als Druck	Relevant für Durchfluss-Sensor "dp-Geber ISO 5167" bzw. "AGA 3": Wenn der bestimmte Differenzdruck größer als der Absolutdruck ist, kann keine Berechnung mehr stattfinden. Die Parametrierung und die Anschlüsse der Messumformer sind zu überprüfen.
ISO-5167-Berechnungs- abbruch	Relevant für Durchfluss-Sensor "dp-Geber ISO 5167": Wenn bei der Berechnung gemäß ISO 5167 keine Konvergenz er- zielt wird, kann keine Berechnung mehr stattfinden. Die Paramet- rierung und die Anschlüsse der Messumformer sind zu überprüfen.
Unzulässiger p- oder T- Wert	Relevant für Messstoff "Wasser" bzw. "Dampf": Wenn die Werte für den Druck oder die Temperatur außerhalb eines gemäß IAPWS-97 definierten Bereichs liegen, kann keine Berechnung mehr stattfinden. Die Parametrierung und die An- schlüsse der Messumformer sind zu überprüfen.
Wasseralarm	Relevant für Messstoff "Heißdampf": Wenn die aktuelle Druck-/Temperaturkombination den Aggregats- zustand Wasser ergibt, wird ein Wasseralarm ausgegeben und die Berechnung eingestellt (vgl. 9.1.3.2).
Dampfalarm	Relevant für Messstoff "Wasser": Wenn die aktuelle Druck-/Temperaturkombination den Aggregats- zustand Dampf ergibt, wird ein Dampfalarm ausgegeben und die Berechnung eingestellt

Hinweise:

_

¹: Für die Druck- und Temperatureingänge können Rückfallwerte parametriert werden. Bei einem Drahtbruch, Defekt oder Kurzschluss des betreffenden Sensors wird dann dieser Rückfallwert verwendet. Vgl. dazu 9.2.2.4.

²: Eine Hysterese von ±0,02 mA findet Anwendung.

Wenn die Berechnung eingestellt wird, wird für alle berechneten Werte "nan" angezeigt.

Fehlermeldungen, welche die Funktionserweiterungen betreffen, werden jeweils bei der Beschreibung dieser Erweiterungen gesondert aufgeführt.

7.5 Ausgabe von Fehlern über die Ausgänge

Fehler werden auch über die Ausgänge signalisiert.

Ausgabe	Erläuterung
Fehlerstrom an Ana-	Wenn eine Durchflussberechnung nicht möglich ist (vgl. 7.4) und
logausgang X	ein Durchflusswert am Analogausgang X ausgegeben werden soll, gibt dieser einen parametrierbaren Fallback-Wert aus (vgl. 9.2.4)

Ausgabe	Erläuterung
Signal am elektronischen Relais (Schaltausgang) 1 bzw. 2 oder am Relais	Parametrierung des Sammelalarms für einen der Schaltausgänge oder das Relais (vgl. 9.2.4) Der Sammelalarm wird ausgelöst, wenn ein Fehler vorliegt (vgl. 7.4)

Hinweis: Bei den Funktionserweiterungen können zusätzliche Signale auftreten, diese werden jeweils bei der Beschreibung der Erweiterungen aufgeführt.

8 Funktionserweiterungen

Die Funktionserweiterungen können ausgehend von der Menüauswahl (vgl. 6.4) genutzt und angepasst werden.

8.1 Luftspüleinrichtung LSE

8.1.1 Hintergrund

Der AccuMind[®] kann die optionale Luftspüleinrichtung LSE-HD ansteuern. Einzelheiten zur LSE können der separaten Anleitung "Die Luftspüleinrichtung LSE-HD (Grundausführung mit Antrieb, ohne Steuerung)" in der jeweils gültigen Fassung entnommen werden.

Hinweis: Ein Spülzyklus wird nur durchgeführt, wenn für T1 eine gültige Temperatur vorliegt (T1 also nicht "nan" ist) und T1 < 400 °C ist.

8.1.2 Anzeige

Wenn die LSE-Funktionalität in den Basiseinstellungen aktiviert ist (vgl. 9.1.6), gibt es eine zusätzliche Displayseite (siehe Abbildung 32). Diese Displayseite gibt den Status der LSE aus und bietet zusätzlich zwei Felder zur Darstellung von Prozesswerten. In der Grundstellung, die dem Messbetrieb entspricht, wird im Statusbereich die Restdauer bis zur nächsten Spülung angezeigt (wenn der Timerbetrieb deaktiviert ist, erscheint die Meldung "Warte auf externe Auslösung")

Abbildung 32: Display mit Informationen zur LSE

8.1.3 Ablauf eines Spülzyklus

Hinweis: Während eines Spülzyklus ist der Differenzdruckmessumformer nicht mit dem Prozess verbunden. Auch die Druck- und die Temperaturmessung können durch den Spülprozess beeinflusst werden. Es kann während des Zyklus daher kein aktueller Durchfluss ermittelt werden. Die Ein-
gangswerte für Differenzdruck, Druck und Temperatur werden somit während des gesamten Spülzyklus eingefroren. Damit behalten auch die Anzeigewerte und die Ausgänge ihren letzten Zustand bei. Zähler zählen konstant weiter und Puls-/Frequenzausgänge geben die zuletzt gültigen Werte konstant weiter aus. Es besteht die Möglichkeit, während des Spülzyklus ein Statussignal an die Leitstelle zu senden (vgl. 8.1.6).

Sollte in der Leitstelle nur der vom dp-Messumformer ausgegebene Stromwert benötigt werden, kann dieser auch direkt über Aout1 ausgegeben werden (vgl. 9.2.4). Während des Zyklus wird dann der zuvor gemessene Stromwert eingefroren.

Nach einer parametrierten Dauer (im Timerbetrieb) oder auf eine externe Auslösung hin wird ein Spülzyklus durchgeführt. Folgende Tabelle illustriert einen Spülzyklus:

Ausgabe am AccuMind®	Erläuterung	Ungefähre Dauer
Fahre zur Nullpunktkon- trolle	Der Drehantrieb der LSE wird eingeschal- tet, um die Nullpunktkontrollposition anzu- fahren.	8 s
Nullpunktkontrolle	Die Nullpunktkontrollposition wurde er- reicht. Der Nullpunkt wird kontrol- liert/korrigiert.	<pre>"Automatische Nullpunkt- korrektur": An: 10 s Aus: Der beim Menüpunkt "Nullpunktkontrolldauer [s]" eingestellte Wert</pre>
Fahre zur Kammer 1	Der Drehantrieb der LSE wird eingeschal- tet, um die erste Kammer anzufahren.	8 s
Spülung Kammer 1	Die Position zur Spülung der ersten Kam- mer wurde erreicht. Die erste Kammer wird gespült.	Der beim Menüpunkt "Spüldauer [s]" eingestellte Wert
Fahre zur Kammer 2	Der Drehantrieb der LSE wird eingeschal- tet, um die zweite Kammer anzufahren.	8 s
Spülung Kammer 2	Die Position zur Spülung der zweiten Kam- mer wurde erreicht. Die zweite Kammer wird gespült.	Der beim Menüpunkt "Spüldauer [s]" eingestellte Wert
Fahre zur Grundstellung	Der Drehantrieb der LSE wird eingeschal- tet, um die Grundstellung anzufahren.	8 s
Warte auf Einschwingen	Die Grundstellung wurde erreicht. Dem Messumformer wird Zeit gewährt, um sich wieder auf die Prozessbedingungen einzu- pendeln.	Der beim Menüpunkt "Ein- schwingdauer [s]" einge- stellte Wert

Hinweis: Während die LSE zu einer Position fährt, erscheint zusätzlich der Hinweis "Motortimeout: 36 s / 40 s". Die "40 s" in diesem Beispiel geben die maximale Dauer an, die verstreichen darf, bis die nächste Position erreicht wird. Die "36 s" geben die aktuelle Restdauer an. Wenn diese Restdauer abgelaufen ist – die LSE also innerhalb von 40 s keine definierte Position angefahren hat – liegt ein Defekt der LSE vor. Es erscheint dann die Meldung "Fehler: Zielposition nicht erreicht! Motor prüfen".

Eine Überprüfung des Antriebs darf nur im spannungsfreien Zustand erfolgen.

Hinweis: Während sich die LSE in einer der Zustände "Nullpunktkontrolle", "Spülung Kammer 1", "Spülung Kammer 2" bzw. "Warte auf Einschwingen" befindet, wird zusätzlich eine "Restzeit 17 s / 20

s" eingeblendet. Die "20 s" in diesem Beispiel geben die parametrierte Dauer des jeweiligen Vorgangs an. Die "17 s" geben die aktuelle Restdauer an. Bei aktivierter automatischer Nullpunktkorrektur (vgl. hierzu den Hinweis unter 8.1.4) erscheint im Zustand "Nullpunktkontrolle" keine Restzeitangabe, da die Korrektur abhängig von der Parametrierung und des Verhaltens des Messumformers durchgeführt wird.

8.1.4 Parametrierung und manuelle Steuerung

Das LSE-Menü (vgl. Abbildung 33) kann ausgehend von der Menüauswahl (vgl. 6.4) aufgerufen werden. Die allgemeine Bedienung der Untermenüs ist in 6.5 beschrieben.

LSE	SKI
Kommandos	[+]
Timer	[+]
Nullpunktkontrolle	[+] —
Spüldauer [s]	20
Einschwingdauer [s]	20 🗸
Beenden	

Abbildung 33: Das LSE-Menü

Hinweise:

Die LSE kann in zwei Modi betrieben werden: Mit oder ohne automatische Nullpunktkorrektur. Bei aktivierter Option "LA" (vgl. Abschnitt 13) lässt sich die automatische Nullpunktkorrektur einschalten. Wenn es bei der Ausgabe bzw. Bedienung Unterschiede zwischen den beiden Varianten gibt, wird in den folgenden Tabellen eine Fallunterscheidung getroffen.

Nach der Installation muss ein initialer Nullpunktabgleich durchgeführt werden (siehe Erläuterung zum Kommando "Bewege zur Nullpunktposition" in folgender Tabelle).

Wert	Auswahlmöglichkeit	Bemerkung
Kommandos	Ausklappfunktion	
Starte Spülung	Funktionsauslösung	Startet einen Spülzyklus
Bewege zur Null- punktposition	Funktionsauslösung	Die LSE wird zur Nullpunktkontrollposition gefahren. Es wird dann der vom Messumformer ausgegeben Stromwert bzw. der Differenzdruck angezeigt. Am Messumformer kann nach der Installation und da- nach bei Bedarf ein Nullpunktabgleich durchgeführt werden. Bei aktivierter Funktion "LA" kann der Null- punkt auch über "…Nullpunkt setzen" gesetzt wer- den (siehe nächster Punkt).
Nullpunkt setzen	Funktionsauslösung	Den Nullpunkt setzen. Dieses Kommando ist nur aktiv, wenn zuvor die Nullpunktbedingung herge- stellt wurde. Nur verfügbar bei aktivierter Option "LA"; als Signalquelle des Differenzdruckmessum- formers muss "HART" gewählt werden (vgl. 9.2.2.1). Der Nullpunkt wird unabhängig vom angezeigten Wert (also dem zuvor eingestellten Nullpunkt des Messumformers) gesetzt.

Wert	Auswahlmöglichkeit	Bemerkung
Bewege zur Grund- stellung	Funktionsauslösung	Die LSE wird von der Nullpunktkontrollposition zur Grundstellung zurück gefahren
Timer	Ausklappfunktion	
Timer aktiv	An Aus	Aktiviert bzw. deaktiviert den Timerbetrieb
Timerdauer [min]	Zahlenwert	Angabe der Wartedauer zwischen zwei Spülzyklen. Nur sichtbar, wenn Timerbetrieb aktiv
Nullpunktkontrolle	Ausklappfunktion	
Automatische Nullpunktkorrektur	An Aus	Aktiviert bzw. deaktiviert die automatische Null- punktkorrektur. Bei aktiver Funktion muss als Signalquelle des Diffe- renzdruckmessumformers HART gewählt werden (vgl. 9.2.2.1)

Menüeinträge für: "Automatische Nullpunktkorrektur": An

Wert	Auswahlmöglichkeit	Bemerkung
Nullpunkt max. Abweichung	Zahlenwert	Angabe der maximal zulässigen Nullpunktabwei- chung VOR dem Nullpunktabgleich. Wenn die Ab- weichung des Nullpunktes (im Vergleich zum letzten Abgleich) zu groß ist, liegt evtl. ein Defekt des Diffe- renzdruckmessumformers vor. Der Nullpunktabgleich wird bei zu großer Abwei- chung nicht durchgeführt.

Menüeinträge für: "Automatische Nullpunktkorrektur": Aus

Wert	Auswahlmöglichkeit	Bemerkung
Nullpunktkontroll- dauer [s]	Zahlenwert	Angabe der Dauer der Nullpunktkontrolle. Dem Messumformer muss die Gelegenheit gegeben wer- den, auf den Nullpunkt einzuschwingen. Diese Dau- er hängt hauptsächlich von der Dämpfung des Messumformers ab.
Nullpunkt I.min	Zahlenwert	Der minimal zulässige Stromausgabewert des Mess- umformers bei Nullpunktbedingung
Nullpunkt I.max	Zahlenwert	Der maximal zulässige Stromausgabewert des Messumformers bei Nullpunktbedingung

Fortsetzung für beliebige Einstellung von "Automatische Nullpunktkorrektur"

Wert	Auswahlmöglichkeit	Bemerkung
Spüldauer [s]	Zahlenwert	Dauer, die beide Kammern jeweils gespült werden

Wert	Auswahlmöglichkeit	Bemerkung
Einschwingdauer [s]	Zahlenwert	Angabe der Dauer des Einschwingens in der Mess- position. Dem Messumformer muss die Gelegenheit gegeben werden, auf den Messwert einzuschwin- gen. Diese Dauer hängt hauptsächlich von der Dämpfung des Messumformers ab.
Motortimeout [s]	Zahlenwert	Die Zeit, die sich der Motor maximal drehen darf, bis er die jeweilige Zielposition angefahren hat.

8.1.5 Fehlermeldungen im Display

Vgl. hierzu auch die Erläuterung unter 7.2

Fehler	Erläuterung
Nullpunktkontrollfehler	Für "Automatische Nullpunktkorrektur: An": Der Fehler wird ausgegeben, wenn die automatische Nullpunktkor- rektur nicht durchgeführt werden konnte. Mögliche Ursachen: Nach der Installation wurde kein initialer Nullpunktabgleich durch- geführt (vgl. 8.1.4); der Wert für die max. Nullpunktabweichung ist zu klein parametriert oder es liegt ein Defekt vor.
	Für "Automatische Nullpunktkorrektur: Aus": Der Fehler wird ausgegeben, wenn bei der Nullpunktkontrolle eine zu große Abweichung des Stromwertes festgestellt wurde. Um den Fehler zu beheben, muss ein manueller Nullpunktabgleich am Dif- ferenzdruckmessumformer durchgeführt werden.
Autom. NP-Abgleich nur mit HART	Ein automatischer Abgleich kann nur durchgeführt werden, wenn der Differenzdruckmessumformer an einen HART [®] -fähigen Ana- logeingang (Ain1 oder Ain2) angeschlossen ist (vgl. 5.4.2) und als Signalquelle des Differenzdruckmessumformers HART gewählt wurde (vgl. 9.2.2.1)
Motorfehler	Keine der Zielpositionen konnte erreicht werden. Die Berechnung wird eingestellt. Der Antrieb/die Verdrahtung der LSE muss geprüft werden.
Drahtbruch LSE	Eine Zielposition konnte nicht erreicht werden. Die LSE ist wieder in der Grundstellung. Der Antrieb/die Verdrahtung der LSE muss geprüft werden.
4	Eine Überprüfung des Antriebs/der Verdrahtung darf nur im span- nungsfreien Zustand erfolgen.

8.1.6 Signalisierung an die Leitstelle/eine weitere LSE

Die unter 8.1.5 aufgezählten Fehler führen zu den unter 7.5 beschriebenen Ausgangssignalen.

Der AccuMind[®] kann über die Schaltausgänge S1/S2 und das Relais R zusätzlich Signale an das Leitsystem und zu einer anderen LSE (mit AccuMind[®]) ausgeben. Außerdem wird der Antrieb der LSE angesteuert. Die Parametrierung der Schaltausgänge und des Relais ist unter 9.2.4 erläutert.

Signalname	Erläuterung
Motor-Schalter	Dieses Signal dient der Ansteuerung des Antriebs der LSE. Stan- dardmäßig wird dafür das Relais R verwendet.
LSE-Betriebsindikator	Während eines Spülzyklus und während der manuellen Steuerung wird über dieses Signal signalisiert, dass die Messwerte eingefroren sind
LSE-Fehler	Dieses Signal wird ausgegeben, wenn ein Fehler der LSE vorliegt (vgl. 8.1.5).
Nächste LSE	Wenn zwei (oder mehr) LSE an einer Messstelle eingesetzt werden sollen, steuert eine LSE jeweils eine weitere an. So ist gewährleis- tet, dass stets für mindestens eine Durchflussmessung an einer LSE-Position aktuelle Messwerte vorliegen, da nie mehr als eine LSE gleichzeitig einen Spülzyklus durchführt.

Bei QAL1-Anwendung

Da die Schaltausgänge S1/S2 bei QAL1-Anwendung fest belegt sind, steht nur das Signal "Motor-Schalter" am Relais R zur Verfügung.

8.2 Automatischer Nullpunktabgleich AccuFlo®Zero

8.2.1 Hintergrund

Der AccuMind[®] kann den optionalen automatischen Nullpunktabgleich AccuFlo[®]Zero ansteuern.

Der AccuMind[®] überwacht kontinuierlich die Zellentemperatur des Differenzdruckmessumformers. Wird eine Änderung dieses Wertes festgestellt, die außerhalb eines einstellbaren Grenzwertes liegt, wird ein automatischer Nullpunktabgleich durchgeführt. Analog dazu werden Druckänderungen im System überwacht. Werden innerhalb eines einstellbaren Zeitintervalls keine unzulässigen Abweichungen von Zellentemperatur oder Systemdruck festgestellt, wird zur Vermeidung einer unzulässigen Langzeitdrift nach Ablauf des Intervalls ebenfalls ein Nullpunktabgleich durchgeführt. Zur Ermittlung des Systemdrucks wird der Druckmessumformer verwendet. Wenn kein Druckmessumformer vorhanden ist, wird der vom Differenzdruckmessumformer übermittelte Wert für den statischen Druck verwendet (falls der Messumformer diesen Wert misst und über die HART[®]-Schnittstelle zur Verfügung stellt), andernfalls erfolgt keine Überwachung des Druckwertes.

Einzelheiten zum AccuFlo[®]Zero können der separaten Anleitung "Betriebs- und Montageanleitung AccuFlo[®]Zero" in der jeweils gültigen Fassung entnommen werden.

Im AccuMind[®] wird die Bezeichnung "AccuFlo[®]Zero" aus Anzeigegründen zu "Zero" verkürzt.

Der AccuMind[®] kann zwei Differenzdruckmessumformer ansteuern ("Split-Range-Betrieb"), der automatische Nullpunktabgleich wird in diesem Fall für beide Messumformer durchgeführt. Der Einfachheit halber wird in den weiteren Abschnitten stets von nur einem Messumformer gesprochen, die Angaben beziehen sich aber auch auf den Betrieb mit zwei Messumformern.

Bei aktivierter Option "AZ" (vgl. Abschnitt 13) lässt sich der automatische Nullpunktabgleich einschalten. Als Signalquelle des Differenzdruckmessumformers muss "HART" gewählt werden (vgl. 9.2.2.1).

8.2.2 Anzeige

Wenn die Zero-Funktionalität in den Basiseinstellungen aktiviert ist (vgl. 9.1.6), gibt es eine zusätzliche Displayseite (siehe Abbildung 34). Diese Displayseite gibt den Status des AccuFlo[®]Zero aus und bietet zusätzlich zwei Felder zur Darstellung von Prozesswerten. In der Grundstellung, die dem Messbetrieb entspricht, wird im Statusbereich die Restdauer bis zum nächsten Nullpunktabgleich angezeigt (wenn der Timerbetrieb deaktiviert ist, erscheint die Meldung "Warte auf externe Auslösung")

Abbildung 34: Display mit Informationen zum AccuFlo®Zero

8.2.3 Ablauf eines Nullpunktabgleichs

Hinweis: Während eines Nullpunktabgleichs ist der Differenzdruckmessumformer nicht mit dem Prozess verbunden. Es kann während des Abgleichs daher kein aktueller Durchfluss ermittelt werden. Die Eingangswerte für Differenzdruck, Druck und Temperatur werden während des gesamten Abgleichsvorgangs eingefroren. Damit behalten auch die Anzeigewerte und die Ausgänge ihren letzten Zustand bei. Zähler zählen konstant weiter und Puls-/Frequenzausgänge geben die zuletzt gültigen Werte konstant weiter aus. Es besteht die Möglichkeit, während des Abgleichs ein Statussignal an die Leitstelle zu senden (vgl. 8.2.6).

Sollte in der Leitstelle nur der vom dp-Messumformer ausgegebene Stromwert benötigt werden (vom AccuMind[®] gemessen an Ain1), kann dieser auch direkt über Aout1 ausgegeben werden (vgl. 9.2.4). Während des Abgleichs wird dann der zuvor gemessene Stromwert eingefroren.

Nach einer parametrierten Dauer (im Timerbetrieb), bei relevanten Änderungen von Zellentemperatur bzw. Systemdruck oder auf eine externe Auslösung hin wird ein Nullpunktabgleich durchgeführt. Folgende Tabelle illustriert einen Nullpunktabgleich:

Ausgabe am AccuMind®	Erläuterung
Nullpunktbedingung her- stellen	Der AccuFlo [®] Zero stellt physikalisch die Nullpunktbedingung her: Der Messumformer wird vom Prozess getrennt und anschließend werden die beiden Kammern des Messumformers verbunden
Nullpunktabgleich	Dem Messumformer wird Zeit gegeben, sich auf den Nullpunkt einzupendeln. Wenn der Messumformer einen konstanten Mess- wert nahe des alten Nullpunktes liefert, wird dieser Wert als neuer Nullpunkt gesetzt
Messbedingungen her- stellen	Der AccuFlo [®] Zero stellt physikalisch die Messbedingung her: Die Verbindung zwischen den beiden Kammern des Messumformers wird getrennt und danach wird der Messumformer wieder mit dem Prozess verbunden

Ausgabe am AccuMind[®] Erläuterung

Warte auf Einschwingen Dem Messumformer wird Zeit gewährt, um sich wieder auf die Prozessbedingungen einzupendeln.

8.2.4 Parametrierung und manuelle Steuerung

Das Zero-Menü (vgl. Abbildung 35) kann ausgehend von der Menüauswahl (vgl. 6.4) aufgerufen werden. Die allgemeine Bedienung der Untermenüs ist in 6.5 beschrieben.

Zero		S	K
Kommandos		[+]	
Timer		[+]	
max. Temperatura	bweichung	10 °C	-
max. Druckabweic	hung	5 bar	
Abgleich bei Start		Aus	\mathbf{v}
	Beenden		

Abbildung 35: Das Zero-Menü

Hinweis: Nach der Installation muss ein initialer Nullpunktabgleich durchgeführt werden (siehe Erläuterung zum Kommando "Nullpunkt setzen" in folgender Tabelle).

Wert	Auswahlmöglichkeit	Bemerkung
Kommandos	Ausklappfunktion	
Starte Nullpunkt- abgleich	Funktionsauslösung	Startet einen Nullpunktabgleich
Nullpunktbedingung herstellen	Funktionsauslösung	Der AccuFlo [®] Zero stellt die Nullpunktbedingung her: Der Messumformer wird vom Prozess getrennt und die beiden Kammern des Messumformers werden verbunden. Es wird dann der vom Messumformer ausgegeben Differenzdruck angezeigt.
Nullpunkt setzen	Funktionsauslösung	Den Nullpunkt setzen. Dieses Kommando ist nur aktiv, wenn zuvor die Nullpunktbedingung herge- stellt wurde. Der Nullpunkt wird unabhängig vom angezeigten Wert (also dem zuvor eingestellten Nullpunkt des Messumformers) gesetzt.
Messbedingung herstellen	Funktionsauslösung	Der AccuFlo [®] Zero stellt die Messbedingung wieder her: Die Verbindung zwischen den beiden Kammern wird getrennt und die Verbindung zum Prozess wird wieder hergestellt. Nach dem Einschwingen wird die Messung wieder freigegeben
Entlüftung durchführen	Funktionsauslösung	Die Ventile im AccuFlo [®] Zero werden mehrfach ge- schaltet, um eventuell vorhandene Luftblasen zu entfernen. Nur vorhanden für den Hardware-Typ "Magnetven- tile"; nur für Medium Dampf bzw. Flüssigkeit

Wert	Auswahlmöglichkeit	Bemerkung
Timer	Ausklappfunktion	
Timer aktiv	An Aus	Aktiviert bzw. deaktiviert den Timerbetrieb
Timerdauer [min]	Zahlenwert	Angabe der Wartedauer zwischen zwei Nullpunkt- abgleichen. Nur sichtbar, wenn Timerbetrieb aktiv
max. Temperatur- abweichung	Zahlenwert	Der Wert für die maximal zulässige Temperaturab- weichung der Messzelle des Messumformers im Vergleich zum letzten Nullpunktabgleich
max. Druckabwei- chung	Zahlenwert	Der Wert für die maximal zulässige Druckabwei- chung der Messzelle des Messumformers im Ver- gleich zum letzten Nullpunktabgleich. Nur sichtbar, wenn der Systemdruck gemessen werden kann.
Abgleich bei Start	An Aus	Gibt an, ob nach dem Wiederherstellen der Strom- versorgung (z.B. nach einer Anlagenwartung) ein Abgleich durchgeführt werden soll
Entlüftung	Ausklappfunktion	Unterpunkt nur vorhanden für den Hardware-Typ "Magnetventile"; nur für Medium Dampf bzw. Flüs- sigkeit
Anzahl Entlüftungsspiele	Zahlenwert	Die Anzahl, wie oft die Ventile zum Entlüften ge- schaltet werden sollen
Entlüftung bei Start	An Aus	Gibt an, ob nach dem Wiederherstellen der Strom- versorgung (z.B. nach einer Anlagenwartung) eine Entlüftung durchgeführt werden soll
Grundeinstellungen	Ausklappfunktion	
Einschwingdauer [s]	Zahlenwert	Angabe der Dauer des Einschwingens in der Mess- position. Dem Messumformer muss die Gelegenheit gegeben werden, auf den Messwert einzuschwin- gen. Diese Dauer hängt hauptsächlich von der Dämpfung des Messumformers ab.
Timeout [s]	Zahlenwert	Die Zeit, die dem Messumformer maximal gewährt wird, um einen stabilen Nullpunkt zu erreichen.
max. dp-Abweichung	Prozentwert	Angabe der maximal zulässigen Nullpunktabwei- chung VOR dem Nullpunktabgleich. Wenn die Ab- weichung des Nullpunktes (im Vergleich zum letzten Abgleich) zu groß ist, liegt evtl. ein Defekt des Diffe- renzdruckmessumformers vor. Der Nullpunktabgleich wird bei zu großer Abwei- chung nicht durchgeführt. Angabe in Prozent des Messbereichsendwertes des Messumformers. Bsp.: Messbereichsendwert = 23,5 mbar; max. dp-Abweichung = 0,1 % \rightarrow max. dp-Wert vor dem Abgleich = 0,0235 mbar
Hardware-Typ	Drehantrieb Magnetventile	Der Typ des eingesetzten AccuFlo [®] Zero: Version mit Drehantrieb oder Version mit Magnetventilen

Wert	Auswahlmöglichkeit	Bemerkung
Dauer Dämpfung "O s" [s]	Zahlenwert	Die Dämpfung des Messumformers wird vor dem Nullpunktabgleich ausgelesen. Dann wird sie auf "O s" eingestellt, damit der Messumformer schnell auf die Nullpunktbedingung einschwingt. (Die ursprüng- liche Dämpfung wird nach dem Abgleich wiederher- gestellt.)
Dämpfung beim Abgleich [s]	Zahlenwert	Während des eigentlichen Abgleichs wird die Dämp- fung des Messumformers auf diesen Wert gesetzt. So findet eine Mittelwertbildung statt. Das ist z.B. bei Vibrationen der Anlage sinnvoll.
max. Delta beim Abgleich	Prozentwert	Die maximale Schwankung des Nullpunktes wäh- rend des Nullpunktabgleichs. Der Nullpunktmess- wert darf während der Kontrolldauer nicht um mehr als x Prozent des Messbereichsendwertes schwan- ken
Kontrolldauer [s]	Zahlenwert	Die Dauer, während der der Nullpunkt nicht um mehr als das max. Delta schwanken darf

8.2.5 Fehlermeldungen im Display

Vgl. hierzu auch die Erläuterung unter 7.2

-

Fehler	Erläuterung
Nullpunktabgleichfehler	Der Fehler wird ausgegeben, wenn der automatische Nullpunktab- gleich nicht durchgeführt werden konnte. Mögliche Ursachen: Nach der Installation wurde kein initialer Nullpunktabgleich durch- geführt (vgl. 8.2.4); der Wert für die "max. dp-Abweichung" bzw. das "max. Delta beim NPA" ist zu klein parametriert oder es liegt ein Defekt vor.
Autom. NP-Abgleich nur mit HART	Ein automatischer Abgleich kann nur durchgeführt werden, wenn der Differenzdruckmessumformer an einen HART®-fähigen Ana- logeingang (Ain1 oder Ain2) angeschlossen ist (vgl. 5.4.2) und als Signalquelle des Differenzdruckmessumformers HART gewählt wurde (vgl. 9.2.2.1)
Messbedingung nicht hergestellt	Die Messbedingung (Verbindung des Messumformers zum Prozess; keine Verbindung zwischen den Kammern des Messumformers) ist nicht hergestellt. Es kann ein Verdrahtungsfehler oder ein Defekt vorliegen. Die Berechnung wird eingestellt.
Keine Verbindung zum Zero	Der AccuMind [®] kann nicht mit dem AccuFlo [®] Zero kommunizieren. Es kann ein Verdrahtungsfehler oder ein Defekt vorliegen.
<u>A</u>	Eine Überprüfung des AccuFlo [®] Zero/der Verdrahtung darf nur im spannungsfreien Zustand erfolgen.

8.2.6 Signalisierung an die Leitstelle

Die unter 8.2.5 aufgezählten Fehler führen zu den unter 7.5 beschriebenen Ausgangssignalen.

Der AccuMind[®] kann über die Schaltausgänge S1/S2 und das Relais R zusätzlich Signale an das Leitsystem ausgeben. Die Parametrierung der Schaltausgänge und des Relais ist unter 9.2.4 erläutert. Signalname Erläuterung

Signamanic	
Zero-Fehler	Dieses Signal wird ausgegeben, wenn einer der Fehler aus 8.2.5 vorliegt.
Zero-Betriebsindikator	Während eines Nullpunktabgleichs bzw. während einer manuellen Nullpunktkontrolle wird signalisiert, dass die Messwerte eingefroren sind

Bei QAL1-Anwendung

Da die Schaltausgänge S1/S2 bei QAL1-Anwendung fest belegt sind, steht nur das Relais R zur Verfügung.

9 Einstellung der Parameter

Die Parameter können ausgehend von der Menüauswahl (vgl. 6.4) angezeigt und angepasst werden. Die allgemeine Bedienung der Untermenüs ist in 6.5 beschrieben.

Um den AccuMind[®] zu parametrieren, empfiehlt es sich, von "oben nach unten" vorzugehen. In den Menüs werden dabei der Reihe nach alle relevanten Daten eingetragen. Dieses Vorgehen gestaltet sich i.d.R. so intuitiv, dass die Erklärungen in den folgenden Abschnitten häufig nur als Referenz zu Rate gezogen werden müssen.

Das Menü des AccuMind[®] ist so aufgebaut, dass weiter oben in der Baumstruktur getroffenen Einstellungen weiter unten liegende Menüpunkte beeinflussen können. Wenn z.B. bei der Messstoffauswahl "Dampf" festgelegt wurde, werden anschließend keine Gaskomponenten abgefragt (wie das bei der Auswahl eines Gases stattfinden würde).

Die Basiseinstellungen liegen in dieser Analogie über den Prozesseinstellungen. Geänderte Basiseinstellungen können also die Prozesseinstellungen beeinflussen.

Eine Ausnahme von dieser Regel bezieht sich auf die Auswahl der anzuzeigenden Einheiten (vgl. 9.2.3). Alle einheitenbehafteten Werte werden intern auf die SI-Einheiten umgerechnet und dann abgespeichert. Eine Anpassung der anzuzeigenden Einheiten kann somit jederzeit erfolgen.

Hinweis: Wenn grundsätzliche Einstellungen (z.B. die Messstoff-Art) geändert werden, müssen die weiteren Einstellungen anschließend von "oben nach unten" geprüft werden.

9.1 Basiseinstellungen

Hinweis: Die Basiseinstellungen dienen der grundsätzlichen Festlegung von u.a. Messstoff und Durchflusssensor.

Abbildung 36: Basiseinstellungen

Die einzelnen Basiseinstellungen variieren je nach bereits getroffenen Basiseinstellungen. Bei der Beschreibung der folgenden Unterpunkte findet daher ggfls. eine Fallunterscheidung statt.

Bei QAL1-Anwendung Folgende Werte sind in der Hauptebene der Basiseinstellungen fest vorgegeben: Messstoff-Auswahl: "Gas" Messstoff-Art: "Technisches Gas" Durchfluss-Sensor: "dp-Geber ISO 5167"

In den Basiseinstellungen (vgl. Abbildung 36) lassen sich die folgenden Werte parametrieren:

Wert	Auswahlmöglichkeit	Bemerkung
Tag	Freitext	Der hier eingegebene Text erscheint am oberen Rand der Ergebnisdisplays
Messstoff-Auswahl	Gas Dampf Flüssigkeit	Der Messstoff lässt sich auswählen

9.1.1 Tag (Messstellenkennzeichnung) und Messstoff-Auswahl

9.1.2 Messstoff-Art

Messstoff-Art für Basiseinstellung: Messstoff-Auswahl "Gas"

Wert	Auswahlmöglichkeit	Bemerkung
Messstoff-Art	Technisches Gas AGA-8 DC AGA-8 GC SGERG 88 AGA-NX19	Die Art des Gases lässt sich auswählen

Zur Parametrierung der Messstoffdaten der Gase siehe 9.1.3.1

Wert	Auswahlmöglichkeit	Bemerkung
Messstoff-Art	Heißdampf Sattdampf (p) Sattdampf (T)	Die Art des Dampfes lässt sich auswählen

Messstoff-Art für Basiseinstellung: Messstoff-Auswahl "Dampf"

Zur Parametrierung der Messstoffdaten für "Heißdampf" siehe 9.1.3.2. Für "Sattdampf (p)" und "Sattdampf (T)" müssen keine weiteren Messstoffdaten eingegeben werden.

Messstoff-Art für Basiseinstellung: Messstoff-Auswahl "Flüssigkeit"

Wert	Auswahlmöglichkeit	Bemerkung
Messstoff-Art	Wasser Wärmeträgeröl Vereinfachte Flüssig- keit	Die Art der Flüssigkeit lässt sich auswählen

Zur Parametrierung der Messstoffdaten für "Wärmeträgeröl" und "Vereinfachte Flüssigkeit" siehe 9.1.3.3. Für "Wasser" müssen keine weiteren Messstoffdaten eingegeben werden.

9.1.3 Messstoff-Daten

9.1.3.1 Messstoff-Daten für Gase

Messstoff-Daten für Basiseinstellung: Messstoff-Auswahl "Gas"

Wert	Auswahlmöglichkeit	Bemerkung
Messstoff-Daten	Ausklappfunktion	
Referenzdruck	Zahlenwert	Der Referenzdruck für die gewünschten Standard-/ Normbedingungen
Referenztemperatur	Zahlenwert	Die Referenztemperatur für die gewünschten Stan- dard-/Normbedingungen

Hinweis: Die Ausgabe des Normvolumenstroms q_{Vn} bezieht sich immer auf die hier eingetragenen Standard-/Normbedingungen.

Messstoff-Daten für Basiseinstellung	: Messstoff-Auswahl "Gas	s"; Messtoff-Art ,	"Technisches Gas"
--------------------------------------	--------------------------	--------------------	-------------------

Wert	Auswahlmöglichkeit	Bemerkung
Vereinfachter Modus	An Aus	Schaltet zwischen der Abfrage der Normdichte und den Gaskomponenten um. (Bei der Verwendung einer Normdichte können von den ISO-5167-Gebern nur "Wirkdruckgeber einfach" und "Staudrucksonde einfach" verwendet werden.)
Normdichte	Zahlenwert	Die Normdichte des Gasgemisches (bei vereinfach- tem Modus: An). Die Normdichte bezieht sich auf die unter 9.1.3.1 (Tabelle <i>Messstoff-Daten</i> für Basis- einstellung: Messstoff-Auswahl "Gas") eingegebe- nen Standardbedingungen

Wert	Auswahlmöglichkeit	Bemerkung
Taupunkt- Temperatur	Zahlenwert	Die Taupunkt-Temperatur des feuchten Gasgemi- sches (bei vereinfachtem Modus: Aus)
Zustandsgleichung	ldealgas Redlich-Kwong Redlich-Kwong- Soave Peng-Robinson	Auswahl der Zustandsgleichung zur Berechnung der Eigenschaften des Gasgemisches
		(bei vereinfachtem Modus: Aus)
Gaskomponenten	Ausklappfunktion	(bei vereinfachtem Modus: Aus)
Auswahlliste	Eigene Zus. Liste mit Gasen	Bei der Auswahl "Eigene Zus." kann ein eigenes Gas- gemisch zusammengestellt werden. Alternativ kann aus der Liste ein vordefiniertes Gas(-Gemisch) aus- gewählt werden.
Editiermodus	An Aus	Im Editiermodus werden alle auswählbaren Gas- komponenten angezeigt (auch solch mit 0-%-Anteil). (nur bei Auswahl "Eigene Zus.")
Normalisieren	Funktionsauslösung	Die Gaskomponenten werden so normiert, dass die Summe aller Komponenten 100 % ergibt (nur bei Auswahl "Eigene Zus.")
Komponenten	Ausklappfunktion	
Komponente x	Prozentwert	Die Prozentwerte der einzelnen Gaskomponenten.
Bei QAL1-Anwendung		
Es ist nur die Eingabe ei schaltet.	ner Normdichte vorgese	ehen, der "vereinfachte Modus" ist somit fest einge-

Messstoff-Daten für Basiseinstellung: Messstoff-Auswahl "Gas"; Messstoff-Art "AGA-8 DC"

Wert	Auswahlmöglichkeit	Bemerkung
AGA-8-DC- Komponenten	Ausklappfunktion	
Komponente x	Prozentwert	Die Prozentwerte der einzelnen Gaskomponenten

Messstoff-Daten für Basiseinstellung: Messstoff-Auswahl "Gas"; Messstoff-Art "AGA-8 GC"

Wert	Auswahlmöglichkeit	Bemerkung
AGA-8-GC- Parameter	Ausklappfunktion	
Methode	1 2	Berechnungsmethode 1 oder 2
Relative Dichte	Zahlenwert	Die relative Dichte
CO2-Konzentration	Prozentwert	Die Konzentration von CO ₂ in Mol %

Brennwert	Zahlenwert	Der Brennwert des Gases (nur bei Methode 1)
N2-Konzentration	Prozentwert	Die Konzentration von N_2 in Mol % (nur bei Methode 2)

Messstoff-Daten für Basiseinstellung: Messstoff-Auswahl "Gas"; Messstoff-Art "SGERG-88"

Wert	Auswahlmöglichkeit	Bemerkung
SGERG-88- Parameter	Ausklappfunktion	
CH-Konzentration	Prozentwert	Die Konzentration von CH in Mol %
N2-Konzentration	Prozentwert	Die Konzentration von N_2 in Mol %
CO2-Konzentration	Prozentwert	Die Konzentration von CO_2 in Mol %
CO-Konzentration	Prozentwert	Die Konzentration von CO in Mol %
Brennwert	Zahlenwert	Der Brennwert des Gases

Messstoff-Daten für Basiseinstellung: Messstoff-Auswahl "Gas"; Messstoff-Art "AGA-NX19"

Wert	Auswahlmöglichkeit	Bemerkung
Normdichte	Zahlenwert	Die Normdichte des Gases. Die Normdichte bezieht sich auf die unter 9.1.3.1 (Tabelle <i>Messstoff-Daten</i> für Basiseinstellung: Messstoff-Auswahl "Gas") ein- gegebenen Standardbedingungen
AGA-NX19- Parameter	Ausklappfunktion	
CO2-Konzentration	Prozentwert	Die Konzentration von CO_2 in Mol %
N2-Konzentration	Prozentwert	Die Konzentration von N2 in Mol %
Brennwert	Zahlenwert	Der Brennwert des Gases

9.1.3.2 Messstoff-Daten für Dampf

Messstoff-Daten für Basiseinstellung: Messstoff-Auswahl "Dampf"; Messstoff-Art "Heißdampf"

Wert	Auswahlmöglichkeit	Bemerkung
Messstoff-Daten	Ausklappfunktion	
Wasser-Dampf- Fehlergrenze	Zahlenwert	Wenn für den aktuellen Druckwert die Mindesttem- peratur für den Dampfzustand unterschritten wird, rechnet der AccuMind [®] im Modus "Sattdampf (p)" weiter. Es kann parametriert werden, wie weit die Mindesttemperatur unterschritten werden darf. Bei größerer Unterschreitung wird ein Wasseralarm ausgegeben (vgl. 7.4).

9.1.3.3 Messstoff-Daten für Flüssigkeiten

Messstoff-Daten für Basiseinstellung: Messstoff-Auswahl "Flüssigkeit"; Messstoff-Art "Wärmeträgeröl"

Wert	Auswahlmöglichkeit	Bemerkung
Messstoffdaten	Ausklappfunktion	
Auswahl Öl	Liste mit Wärmeträ- gerölen Eigenes Öl	Es kann ein vordefiniertes Wärmeträgeröl aus der Liste ausgewählt werden. Alternativ kann ein "Eigenes Öl" gewählt werden (benutzerdefiniertes Öl)
Name	Anzeigewert	Der Name des benutzerdefinierten Öles wird ange- zeigt. (Nur bei "Eigenes Öl")

Hinweis: Die Daten eines benutzerdefinierten Öles werden über das USB-Menü importiert/exportiert (vgl. 9.3.3).

Messstoff-Daten für Basiseinstellung: Messstoff-Auswahl "Flüssigkeit"; Messstoff-Art "Vereinfachte Flüssigkeit"

Wert	Auswahlmöglichkeit	Bemerkung
Messstoffdaten	Ausklappfunktion	
Dichte	Zahlenwert	Die Dichte der Flüssigkeit

9.1.4 Durchfluss-Sensor

Wert	Auswahlmöglichkeit	Bemerkung
Durchfluss-Sensor	dp-Geber ISO 5167 Volumenstrom AGA-3 AGA-7	Der Durchflusssensortyp lässt sich auswählen

Das Messstellendesign für "dp-Geber ISO 5167" bzw. "AGA-3" ergibt sich gemäß 9.1.5.1. Für "Volumenstrom" bzw. "AGA-7" gemäß 9.1.5.3.

9.1.5 Messstellendesign

9.1.5.1 Messtellendesign für dp-Geber gemäß ISO 5167

Messstellendesign (ISO 5167) für Basiseinstellung: Durchfluss-Sensor "ISO 5167"

Wert	Auswahlmöglichkeit	Bemerkung
Messstellendesign (ISO 5167)	Ausklappfunktion	
Primärelement	Staudrucksonde Blende Eckentnahme Blende D-D/2 Blende Flanschent- nahme ISA1932-Düse Langradius-Düse Venturidüse KBR Konus bearbei- tet KVR geschweißt KVR geschweißt KVR Guss Konus- Durchflussmesser Wirkdruckgeber einfach Staudrucksonde einfach	Auswahl des Wirkdruckgebers
Werkstoff	316L/1.4404 Hastelloy Cxx Inconel Monel 15Mo3 P22/1.7380 P91/92/1.492x Keine Ausdehnung	Auswahlmöglichkeit des für den Wirkdruckgeber verwendeten Werkstoffs (relevant für die Wär- meausdehnung des Wirkdruckgebers)
Drosselöffnung d	Zahlenwert	Die Drosselöffnung des Wirkdruckgebers (für alle Primärelemente außer "Staudrucksonde" und "Staudrucksonde einfach")
Durchflusskoeffizient C	Zahlenwert	Der Durchflusskoeffizient C (nur für Primärelement "Wirkdruckgeber einfach"; für die anderen Wirk- druckgeber wird C berechnet)
Messbeiwert k	Zahlenwert	Der k-Faktor der Staudrucksonde (nur für Pri- märelemente "Staudrucksonde" und "Staudruck- sonde einfach")
Expansionszahl eps	Zahlenwert	Die Expansionszahl ε zur Berücksichtigung der Kom- pressibilität des Fluids (nur für die Primärelemente "Wirkdruckgeber einfach" und "Staudrucksonde einfach"; für die anderen Wirkdruckgeber wird ε berechnet)

Wert	Auswahlmöglichkeit	Bemerkung
Rohrleitung	Ausklappfunktion	
Werkstoff	C-Stahl 316L/1.4404 Monel 15Mo3 P22/1.7380 P91/92/1.492x Keine Ausdehnung	Auswahlmöglichkeit des für das Rohr verwendeten Werkstoffs (relevant für die Wärmeausdehnung der Rohrleitung)
Querschnitt	rund rechteckig	Auswahl der Rohrform (rechteckig nicht bei Blenden)
Innendurchmesser D	Zahlenwert	Der Innendurchmesser des Rohres (nur bei rundem Querschnitt)
Kanalbreite	Zahlenwert	Breite des Kanals (nur bei rechteckigem Querschnitt)
Kanalhöhe	Zahlenwert	Höhe des Kanals (nur bei rechteckigem Querschnitt)
Dämpfung	Zahlenwert	Die Angabe der Dämpfung in Prozent (der letzte gültige Durchflusswert wird mit x Prozent gewichtet mit dem aktuellen Durchflusswert verrechnet; bezo- gen auf eine Zykluszeit von 0,5 s)
Kleinstmengen- Unterdrückung	Ausklappfunktion	
Bezug	$q_m; q_V; q_{Vn}; V$	Bezugsgröße für die Kleinstmengen-Unterdrückung ("Schleichmenge")
Kleinstmenge	Zahlenwert	Die Kleinstmenge, unterhalb welcher der Durch- flusswert auf 0 gesetzt wird
Stützstellen Reynoldszahl	Zahlenwerte	Es können Wertepaare aus Reynoldszahl und Kor- rekturfaktor in Tabellenform eingetragen werden.
		Die Tabelle wird automatisch aufsteigend nach Rey- noldszahl sortiert.
		Für Reynoldszahlen, die kleiner als der kleinste Wert der Tabelle sind, wird der Korrekturfaktor des kleinsten Wertes genommen.
		Zwischen zwei Reynoldszahlen wird der Korrek- turfaktor linear interpoliert.
		Für Reynoldszahlen, die größer als der größte Wert der Tabelle sind, wird der Korrekturfaktor des größten Wertes genommen.
		(Nur verfügbar, wenn für das aktuelle Medium Rey- noldszahlen berechnet werden können.)

Bei QAL1-Anwendung

Als Primärelement ist fest "Staudrucksonde einfach" eingestellt. Die Expansionszahl steht fest auf "1.0"

9.1.5.2 Messtellendesign für dp-Geber gemäß AGA-3

Messstellendesign	(AGA-3) fü	Basiseinstellung:	Durchfluss-Sensor	"AGA-3"
-------------------	------------	-------------------	-------------------	---------

Wert	Auswahlmöglichkeit	Bemerkung
Messstellendesign (ISO AGA-3)	Ausklappfunktion	
Wirkdruckentnahme	Flanschentnahme Eckentnahme	Die Art der Entnahme für die AGA-3-Blende
Werkstoff Blende	C-Stahl 316L/1.4404 Monel Andere	Auswahlmöglichkeit des für die Blende verwendeten Werkstoffs (relevant für die Wärmeausdehnung der Blende) Bei der Auswahl "Andere" wird der Wärmeausdeh- nungskoeffizient α abgefragt (siehe nächster Punkt)
Alpha Blende	Zahlenwert	Der Wärmeausdehnungskoeffizient α , der die Wär- meausdehnung der Blende charakterisiert (nur bei Werkstoff Blende "Andere")
Drosselöffnung d	Zahlenwert	Die Drosselöffnung der Blende
Werkstoff Rohr- leitung	C-Stahl 316L/1.4404 Monel Andere	Auswahlmöglichkeit des für das Rohr verwendeten Werkstoffs (relevant für die Wärmeausdehnung der Rohrleitung) Bei der Auswahl "Andere" wird der Wärmeausdeh- nungskoeffizient α abgefragt (siehe nächster Punkt)
Alpha Rohrleitung	Zahlenwert	Der Wärmeausdehnungskoeffizient α, der die Wär- meausdehnung des Rohrs charakterisiert (nur bei Werkstoff Rohrleitung "Andere")
Innendurchmesser D	Zahlenwert	Der Innendurchmesser des Rohres
Basisdruck	Zahlenwert	Der AGA-3-Basisdruck
Basistemperatur	Zahlenwert	Die AGA-3-Basistemperatur
Dämpfung	Zahlenwert	Die Angabe der Dämpfung in Prozent (der letzte gültige Durchflusswert wird mit x Prozent gewichtet mit dem aktuellen Durchflusswert verrechnet; bezo- gen auf eine Zykluszeit von 0,5 s)
Kleinstmengen- Unterdrückung	Ausklappfunktion	
Bezug	q _m ; q _V ; q _{Vn} ; v	Bezugsgröße für die Kleinstmengen-Unterdrückung ("Schleichmenge")
Kleinstmenge	Zahlenwert	Die Kleinstmenge, unterhalb welcher der Durch- flusswert auf 0 gesetzt wird

Wert	Auswahlmöglichkeit	Bemerkung
Stützstellen Reynoldszahl	Zahlenwerte	Es können Wertepaare aus Reynoldszahl und Kor- rekturfaktor in Tabellenform eingetragen werden.
		Die Tabelle wird automatisch aufsteigend nach Rey- noldszahl sortiert.
		Für Reynoldszahlen, die kleiner als der kleinste Wert der Tabelle sind, wird der Korrekturfaktor des kleinsten Wertes genommen.
		Zwischen zwei Reynoldszahlen wird der Korrek- turfaktor linear interpoliert.
		Für Reynoldszahlen, die größer als der größte Wert der Tabelle sind, wird der Korrekturfaktor des größten Wertes genommen.
		(Nur verfügbar, wenn für das aktuelle Medium Rey- noldszahlen berechnet werden können.)

9.1.5.3 Messtellendesign für Volumenstromgeber und AGA-7-Geber

Messstellendesign (Volumenstrom) für Basiseinstellung: Durchfluss-Sensor "Volumenstrom" oder "AGA-7"

Wert	Auswahlmöglichkeit	Bemerkung
Messstellendesign (Volumenstrom) bzw. Messstellendesign (AGA-7)	Ausklappfunktion	
Basisdruck	Zahlenwert	Der AGA-7-Basisdruck (nur bei AGA-7)
Basistemperatur	Zahlenwert	Die AGA-7-Basistemperatur (nur bei AGA-7)
Nutze Rohrdaten	An Aus	Sollen die Rohrdaten beachtet werden? Bei Einstellung "Aus" erfolgt keine Berechnung der Fließgeschwindigkeit
Rohrleitung	Ausklappfunktion	(nur vorhanden bei Auswahl "Nutze Rohrdaten": An)
Werkstoff	C-Stahl 316L/1.4404 Monel 15Mo3 P22/1.7380 P91/92/1.492x Keine Ausdehnung	Auswahlmöglichkeit des für das Rohr verwendeten Werkstoffs (relevant für die Wärmeausdehnung der Rohrleitung)
Querschnitt	rund rechteckig	Auswahl der Rohrform
Innendurchmesser	Zahlenwert	Der Innendurchmesser des Rohres (nur bei rundem Querschnitt)
Kanalbreite	Zahlenwert	Breite des Kanals (nur bei rechteckigem Querschnitt)

Wert	Auswahlmöglichkeit	Bemerkung
Kanalhöhe	Zahlenwert	Höhe des Kanals (nur bei rechteckigem Querschnitt)
Dämpfung	Zahlenwert	Die Angabe der Dämpfung in Prozent (der letzte gültige Durchflusswert wird mit x Prozent gewichtet mit dem aktuellen Durchflusswert verrechnet; bezo- gen auf eine Zykluszeit von 0,5 s)
Kleinstmengen- Unterdrückung	Ausklappfunktion	
Bezug	qm; qv; qvn; v	Bezugsgröße für die Kleinstmengen-Unterdrückung ("Schleichmenge")
Kleinstmenge	Zahlenwert	Die Kleinstmenge, unterhalb welcher der Durch- flusswert auf 0 gesetzt wird
Stützstellen Reynoldszahl	Zahlenwerte	Es können Wertepaare aus Reynoldszahl und Kor- rekturfaktor in Tabellenform eingetragen werden.
		Die Tabelle wird automatisch aufsteigend nach Rey- noldszahl sortiert.
		Für Reynoldszahlen, die kleiner als der kleinste Wert der Tabelle sind, wird der Korrekturfaktor des kleinsten Wertes genommen.
		Zwischen zwei Reynoldszahlen wird der Korrek- turfaktor linear interpoliert.
		Für Reynoldszahlen, die größer als der größte Wert der Tabelle sind, wird der Korrekturfaktor des größten Wertes genommen.
		Nur verfügbar, wenn für das aktuelle Medium Rey- noldszahlen berechnet werden können.

9.1.6 Funktionserweiterung und Schnittstellen

Wert	Auswahlmöglichkeit	Bemerkung
Funktionserweiterung	Zero LSE Keine	Auswahl der anzusteuernden Funktionserweiterung
Schnittstellen	Ausklappfunktion	
Seriell 1	Deaktiviert Modbus Slave Modbus Master M-Bus Slave	Auswahlmöglichkeit der Belegung der Schnittstelle "Seriell 1" (vgl. 5.4.7)
Seriell 2	Deaktiviert Modbus Slave Modbus Master	Auswahlmöglichkeit der Belegung der Schnittstelle "Seriell 2" (vgl. 5.6)

9.2 Prozesseinstellungen

Hinweis: Nachdem die Basiseinstellungen festgelegt wurden (vgl. 9.1), können über die Prozesseinstellungen die Parameter zu den Eingängen, den Messumformern, den Einheiten, den Ausgängen und den Schnittstellen erfasst werden.

Die einzelnen Prozesseinstellungen variieren je nach gewählten Basis- bzw. bereits getroffenen Prozesseinstellungen. Bei der Beschreibung der folgenden Unterpunkte findet daher ggfls. eine Fallunterscheidung statt.

Prozesseinste	llungen	SKI
Eingänge		[+]
Messumformer		[+]
Einheiten		[+] —
Ausgänge		[+]
Schnittstellen		[+]
	Beenden	

Abbildung 37: Prozesseinstellungen

In den Prozesseinstellungen (vgl. Abbildung 37) lassen sich die folgenden Werte parametrieren:

Wert	Auswahlmöglichkeit	Bemerkung
Eingänge	Ausklappfunktion	
Analogeingang AinX	dp1 dp2 qv T1 T2 p LSE/Zero ext. Deaktiviert	Für jeder der vier Analogeingänge Ain1 bis Ain4 kann gewählt werden, welche Größe darüber be- stimmt werden soll. Ain1 und Ain2 sind HART [®] -fähig

9.2.1 Eingänge

Bei QAL1-Anwendung Die Eingänge sind fest zugewiesen (vgl. 5.4.2). Der Menüpunkt "Eingänge" ist nicht sichtbar.

9.2.2 Messumformer

9.2.2.1 Messumformereinstellungen für dp-Geber gemäß ISO 5167 und AGA-3

Messumformer für Basiseinstellung: Durchflusssensor "dp-Geber ISO 5167" oder "AGA-3"

Wert	Auswahlmöglichkeit	Bemerkung
Messumformer	Ausklappfunktion	
Differenzdruck dp	Ausklappfunktion	
dp bidirektional	An; Aus	Bidirektionale Messung ein-/ausschalten

Wert	Auswahlmöglichkeit	Bemerkung
dp1	Ausklappfunktion	
dp1 Signalquelle	HART 4-20 mA 0-20 mA Festwert ¹	Die verwendete Signalquelle für den ersten Diffe- renzdruck-Wert
dp1 Radizierung	Im Durchflussrechner Im Messumformer	Angabe, wo die Radizierung des Differenzdruck- Signals stattfindet
dp1.min	Zahlenwert ²	Der Differenzdruck bei 0/4 mA
dp1.max	Zahlenwert ²	Der Differenzdruck bei 20 mA
dp1.offset	Zahlenwert	Eingabemöglichkeit für eine konstante Abweichung (z.B. aufgrund der Einbausituation)
dp2 (unterer Bereich bei Split-Range)	Ausklappfunktion	
dp2 Signalquelle	HART 4-20 mA	Die verwendete Signalquelle für den zweiten Differenzdruck-Wert
	0-20 mA Festwert ¹ Deaktiviert	Nur relevant bei Split-Range-Anwendungen
dp2 Radizierung	Im Durchflussrechner Im Messumformer	Angabe, wo die Radizierung des Differenzdruck- Signals stattfindet
dp2.min	Zahlenwert ²	Der Differenzdruck bei 0/4 mA
dp2.max	Zahlenwert ²	Der Differenzdruck bei 20 mA
dp2.offset	Zahlenwert	Eingabemöglichkeit für eine konstante Abweichung (z.B. aufgrund der Einbausituation)

9.2.2.2 Messumformereinstellungen für Volumenstromgeber

Messumformer für Basiseinstellung: Durchflusssensor "Volumenstrom"

Wert	Auswahlmöglichkeit	Bemerkung				
Messumformer	Ausklappfunktion					
Volumenstrom q_V	Ausklappfunktion					
q _v Signalquelle	4-20 mA 0-20 mA Frequenz Festwert ¹	Die verwendete stromsensor	Signalquelle	für	den	Volumen-

Messumformer für Basiseinstellung: Durchflusssensor "Volumenstrom"; Signalquelle "0/4-20 mA"

Wert	Auswahlmöglichkeit	Bemerkung
q _v .min	Zahlenwert	Der Durchflusswert bei 0/4 mA
q _v .max	Zahlenwert	Der Durchflusswert bei 20 mA

_

Wert	Auswahlmöglichkeit	Bemerkung
q _v .min	Zahlenwert	Der Durchflusswert am unteren Messbereichsende
q _v .min Frequenz	Zahlenwert	Die Frequenz am unteren Messbereichsende
q _v .max	Zahlenwert	Der Durchflusswert am oberen Messbereichsende
q _v .max Frequenz	Zahlenwert	Die Frequenz am oberen Messbereichsende

Messumformer für Basiseinstellung: Durchflusssensor "Volumenstrom"; Signalquelle "Frequenz"

9.2.2.3 Messumformereinstellungen für AGA-7-Sensoren

Messumformer für Basiseinstellung: Durchflusssensor "AGA-7"

Wert	Auswahlmöglichkeit	Bemerkung
Messumformer	Ausklappfunktion	
Volumenstrom q _v (AGA-7)	Ausklappfunktion	
Pulswertigkeit	Zahlenwert	Der Wert, der einem Puls entsprechen soll. Beispielsweise 1 Puls = 5 m^3
Kalibrierdaten	Zahlenwerte	Es können Wertepaare aus Durchflusswert (q_V) und zugehöriger Abweichung in Tabellenform eingetragen werden.
		Die Tabelle wird automatisch aufsteigend nach $q_{\rm V}$ sortiert.
		Für Durchflusswerte, die kleiner als der kleinste Wert der Tabelle sind, wird die Abweichung des kleinsten Wertes genommen.
		Zwischen zwei Durchflusswerten wird die Abwei- chung linear interpoliert.
		Für Durchflusswerte, die größer als der größte Wert der Tabelle sind, wird die Abweichung des größten Wertes genommen.
q _v r.min	Zahlenwert	Der minimale Nennvolumenstrom
q _v r.max	Zahlenwert	Der maximale Nennvolumenstrom

9.2.2.4 Messumformereinstellungen: Fortsetzung für beliebige Basiseinstellung

Messumformer (Fortsetzung für beliebige Basiseinstellung)

Wert	Auswahlmöglichkeit	Bemerkung
Temperatur T1	Ausklappfunktion	
Т1 Тур	Pt100 3-Leiter Pt100 4-Leiter	Die verwendete Signalquelle für den ersten Temperaturwert
	4-20 mA 0-20 mA Festwert ¹	Bei der Anwendung "Sattdampf (p)" erfolgt keine Abfrage der ersten Temperatur
T1.min	Zahlenwert	Die Temperatur bei 0/4 mA (nicht vorhanden bei Auswahl eines Pt100)
T1.max	Zahlenwert	Die Temperatur bei 20 mA (nicht vorhanden bei Auswahl eines Pt100)
T1.offset	Zahlenwert	Eingabemöglichkeit für eine konstante Abweichung
T1 nutze Fallback	An Aus	Für den Fall eines Drahtbruchs oder Kurzschlusses kann ein Rückfallwert parametriert werden
T1.fallback	Zahlenwert	Der Rückfallwert
T1 nutze StdKoeff.	An Aus	Für t \geq 0 °C können abweichende Koeffizienten an- gegeben werden ³ (bei Auswahl eines Pt100)
Koeffizient A	Zahlenwert	Koeffizient A
Koeffizient B	Zahlenwert	Koeffizient B
Temperatur T2	Ausklappfunktion	
Т2 Тур	Pt100 3-Leiter Pt100 4-Leiter	Die verwendete Signalquelle für den zweiten Temperaturwert
	4-20 mA 0-20 mA Festwert ¹	Wenn eine zweite Temperaturmessung nicht nötig ist, kann ein beliebiger Festwert eingestellt werden
T2.min	Zahlenwert	Die Temperatur bei 0/4 mA (nicht vorhanden bei Auswahl eines Pt100)
T2.max	Zahlenwert	Die Temperatur bei 20 mA (nicht vorhanden bei Auswahl eines Pt100)
T2.offset	Zahlenwert	Eingabemöglichkeit für eine konstante Abweichung
T2 nutze Fallback	An Aus	Für den Fall eines Drahtbruchs oder Kurzschlusses kann ein Rückfallwert parametriert werden
T2.fallback	Zahlenwert	Der Rückfallwert
T2 nutze StdKoeff.	An Aus	Für t \ge 0 °C können abweichende Koeffizienten an- gegeben werden ³ (bei Auswahl eines Pt100)
Koeffizient A	Zahlenwert	Koeffizient A
Koeffizient B	Zahlenwert	Koeffizient B

_

Wert	Auswahlmöglichkeit	Bemerkung
Druck p	Ausklappfunktion	
р Тур	Absolut 4-20 mA	Die verwendete Signalquelle für den Druckwert
	Relativ 4-20 mA Absolut 0-20 mA Relativ 0-20 mA	Bei den Messstoffen "Wärmeträgeröl", "Vereinfach- te Flüssigkeit" und "Sattdampf (T)" erfolgt keine Abfrage des Drucks
	Deaktiviert	Beim Messstoff "Wasser" kann der Drucksensor deaktiviert werden.
p.Auslegung (abs)	Zahlenwert	Der Auslegungsdruck für die Dichteberechnung (nur bei Messstoff "Wasser" und deaktiviertem Druck- sensor)
p Position	Rohr Plus-Kammer Minus-Kammer	Montageposition des Druckmessumformers; dient der Korrektur des Druckwertes (nur bei Primärelement "Staudrucksonde" bzw. "Staudrucksonde einfach")
p.min ⁴	Zahlenwert	Der Druck bei 0/4 mA
p.max ⁴	Zahlenwert	Der Druck bei 20 mA
p.offset	Zahlenwert	Eingabemöglichkeit für eine konstante Abweichung
p nutze Fallback	An Aus	Für den Fall eines Drahtbruchs oder Kurzschlusses kann ein Rückfallwert parametriert werden
p.fallback ⁴	Zahlenwert	Der Rückfallwert
p.Umgebung⁵	Zahlenwert	Der Umgebungsdruck (nur bei Relativdruckmessung)

Hinweise:

¹: Bei der Auswahl "Festwert" erfolgt die Abfrage dieses Wertes in der Form "Wert x.const". Die weiteren Angaben für diesen Wert (min/max etc.) werden dann nicht mehr abgefragt.

²: Bei einer HART[®]-Verbindung zum Messumformer, werden die unteren/oberen Grenzen automatisch bestimmt. Sie dienen bei einem Verlust der HART[®]-Kommunikation als Rückfalloption (vgl. 7.4).

³: Die Temperaturbestimmung bei der Pt100-Messung für t \ge 0 °C geschieht gemäß:

 $R_t = 100\Omega \cdot (1 + At + Bt^2)$ mit den Standardkoeffizienten: $A = 3,9083 \cdot 10^{-3} \circ C^{-1}$ und $B = -5,775 \cdot 10^{-7} \circ C^{-2}$

⁴: Bei der Auswahl der Druckmessumformertypen "Absolut 4-20 mA" bzw. "Absolut 0-20 mA" werden Absolutdrücke als Eingabewerte erwartet. Bei der Auswahl der Druckmessumformertypen "Relativ 4-20 mA" bzw. "Relativ 0-20 mA" werden Relativdrücke als Eingabewerte erwartet.

⁵: Der Umgebungsdruck wird als Absolutdruck abgefragt.

Bei QAL1-Anwendung

Die Menüpunkte für "T2" sind nicht vorhanden.

Wert	Auswahlmöglichkeit	Bemerkung
Einheiten	Ausklappfunktion	
Prozessgröße x	Liste entsprechender Einheiten	Für die im AccuMind [®] verwendeten Prozessgrößen lässt sich die anzuzeigende Einheit auswählen

9.2.3 Einheiten

9.2.4 Ausgänge

Wert	Auswahlmöglichkeit	Bemerkung
Ausgänge	Ausklappfunktion	
Analogausgang Aout1 ¹	Ausklappfunktion	
Aout1 Zuordnung	$q_m; q_V; q_{Vn}; v; T1; T2; p_{abs}; p_{rel}; dQ; Ana-$	Die über den Analogausgang 1 auszugebende Pro- zessgröße
	logeingang Ain1; Deaktiviert	Bei Auswahl von "Analogeingang Ain1" wird der an Ain1 gemessene Strom 1:1 an Aout1 ausgegeben. Vgl. dazu auch 8.1.3 bzw. 8.2.3
Aout1 Signalart	4-20 mA 0-20 mA	Auswahlmöglichkeit für die Charakteristik des 1. Analogausgangs
Aout1.min	Zahlenwert	Der Ausgabewert bei 0/4 mA
Aout1.max	Zahlenwert	Der Ausgabewert bei 20 mA
Aout1.fallback	Zahlenwert	Der Stromwert, der im Fehlerfall ausgegeben wird (vgl. 7.5)
Schaltausgang S1 ²	Ausklappfunktion	
S1 Verhalten Zählpuls ³ MIN-Schalt	Zählpuls ³ MIN-Schalter	Auswahl des Schaltverhaltens für das elektronische Relais 1
	MAX-Schalter Frequenzausgang ³ Sammelalarm	Abhängig von der getroffenen Auswahl werden wei- tere Parameter abgefragt (siehe folgende Tabellen)
	Motor-Schalter	Zum Punkt "Sammelalarm" vgl. 7.5
LSE- Betriebsindikator LSE-Fehler	Zu den Punkten "Motor-Schalter", "LSE- Betriebsindikator", "LSE-Fehler" und "Nächste LSE" vgl. 8.1.6	
	Zero-Fehler Zero- Betriebsindikator Deaktiviert	Zu den Punkten "Zero-Fehler" und "Zero- Betriebsindikator" vgl. 8.2.6

Bei QAL1-Anwendung

Für "....S1 Verhalten" ist fest "QAL-Kombination" gesetzt.

"QAL-Kombination" steht für:

"Sammelalarm" oder "LSE-/Zero-Betriebsindikator" oder Wartung* oder Hard Fault ("abgestürzt") oder Spannungsverlust

Das elektronische Relais S1 wird bei einer der vorgenannten Bedingungen geöffnet. Im Normalbetrieb ist es geschlossen.

*: Wartung bedeutet, dass das Parametriermenü aufgerufen wurde. Die Berechnung wird aber weiterhin durchgeführt und die Werte (an den Analogausgängen etc.) werden auch weiterhin ausgegeben.

Für "....S2 Verhalten" ist fest "MIN-Schalter" gesetzt.

Für "....R Verhalten" ist bei aktiver Funktionserweiterung "LSE" fest "Motor-Schalter" gesetzt.

Wert	Auswahlmöglichkeit	Bemerkung
S1 Zuordnung	m1; m2; m abs; Q1; Q2; Q abs; V1; V2; V abs; Vn1; Vn2; Vn abs	Auswahl der über den Zählpuls auszugebenden Größe. Jeweils in Flussrichtung 1 ("positiver Durchfluss") oder 2 ("negativer Durchfluss"; nur relevant bei bidirektionalem Geber). Bei Auswahl einer Größe mit "abs" erfolgt die Ausgabe bei positivem als auch negativem Durchfluss.
S1 Pulswertigkeit	Zahlenwert	Der Wert, der einem Puls entsprechen soll. Beispielsweise 1 Puls = 5 m^3
S1 Pulsweite [ms]	Zahlenwert	Die Dauer, die ein Puls in Anspruch nimmt und gleichzeitig die Mindestdauer zwischen zwei Pulsen

Ausgänge für S1 Verhalten: Zählpuls³

Ausgänge für S1 Verhalten: Frequenzausgang³

Wert	Auswahlmöglichkeit	Bemerkung
S1 Zuordnung	q _v 1; q _v 2; q _v abs; q _{vn} 1; q _{vn} 2; q _{vn} 2 abs; q _m 1; q _m 2; q _m abs; dQ 1; dQ 2; dQ abs	Auswahl der als Frequenz auszugebenden Größe. Jeweils in Flussrichtung 1 ("positiver Durchfluss") oder 2 ("negativer Durchfluss"; nur relevant bei bidirektionalem Geber). Bei Auswahl einer Größe mit "abs" erfolgt die Ausgabe bei positivem als auch negativem Durchfluss.
S1 Maximalwert	Zahlenwert	Der maximale Wert der auszugebenden Größe
S1 f.max [Hz]	Zahlenwert	Die maximale Frequenz (diese entspricht dem ma- ximalen Wert der auszugebenden Größe)

Wert	Auswahlmöglichkeit	Bemerkung
S1 Zuordnung	q _m ; q _v ; q _{vn} ; T1; T2; p _{abs} ; p _{rel} ; dQ; v	Auswahl der zu überwachenden Messgröße
S1 Schaltwert	Zahlenwert	S1 wird bei Auswahl des MIN-Schalters geschaltet, wenn der Messwert kleiner/gleich (" \leq ") dem Schaltwert ist. Bei Auswahl des MAX-Schalters wird geschaltet, wenn der Messwert größer/gleich (" \geq ") dem Schaltwert ist.
S1 Hysterese	Zahlenwert	Angabe der Hysterese für den Schaltwert
Bei QAL1-Anwendung		
Für "S2 Zuordnung" is Für "S2 Schaltwert" is Für "S2 Hysterese" isf	st fest "Geschwindigkeit st fest "2 m/s" gesetzt. st fest "0 m/s" gesetzt.	v" gesetzt.

Ausgänge für S1 Verhalten: MIN-/MAX-Schalter

Ausgänge für S1 Verhalten: alle außer Zählpuls und Frequenzausgang

Wert	Auswahlmöglichkeit	Bemerkung
S1 Normalzustand ⁴	Offen Geschlossen	Festlegung des Schaltzustandes für den Normalzu- stand.
Bei QAL1-Anwendung		

Für "....S1 Normalzustand" ist fest "geschlossen" gesetzt. Für "....S2 Normalzustand" ist fest "offen" gesetzt.

Hinweise:

¹: Die Einstellungen für Analogausgang Aout2 sind analog zu Aout1 vorzunehmen

²: Die Einstellungen für Schaltausgang S2 und Relais R sind analog zu S1 vorzunehmen.

³: Für das Relais R können kein Zählpuls und kein Frequenzausgang parametriert werden.

⁴: Für das Relais R gibt es die Einstellung des Normalzustandes nicht. Bei einem spannungsfreien AccuMind[®] gilt unabhängig zur Parametrierung: S1 ist offen (NO) und S2 ist geschlossen (NC) (vgl. 5.4.6).

9.2.5 Schnittstellen

Wert	Auswahlmöglichkeit	Bemerkung
Schnittstellen	Ausklappfunktion	
Ethernet	Ausklappfunktion	
IP-Adresse	Freitext	Eingabemöglichkeit für die IP-Adresse
Subnetzmaske	Freitext	Eingabemöglichkeit für die Subnetzmaske
MAC-Adresse	Freitext	Eingabemöglichkeit für die MAC-Adresse

Wert	Auswahlmöglichkeit	Bemerkung
Standardgateway	Freitext	Eingabemöglichkeit für das Standardgateway
DHCP	An Aus	DHCP ein-/ausschalten. Bei eingeschaltetem DHCP wird die Ethernet-Konfiguration (IP-Adresse, Sub- netzmaske und Standardgateway) automatisch be- zogen
Seriell 1 ¹	Ausklappfunktion	
Seriell 1 Parität	Keine Gerade Ungerade	Auswahl der Parität für die 1. serielle Schnittstelle
Seriell 1 Anzahl Bit	7 Bit; 8 Bit	Auswahl der Bitanzahl
Seriell 1 Baudrate	4800; 9600; 19200; 38400; 57600; 115200	Auswahl der Baudrate
Seriell 1 Adresse	Zahlenwert	Auswahl der Adresse
Seriell 1 Stoppbits	1 Bit; 2 Bit	Auswahl der Stoppbitanzahl

Hinweise:

¹: Die Einstellmöglichkeiten für die 2. serielle Schnittstelle ergeben sich analog zur 1. Die seriellen Schnittstellen sind nur verfügbar, wenn sie in den Basiseinstellungen freigeschaltet sind (vgl. 9.1).

Zu den Ausgabemöglichkeiten der digitalen Schnittstellen vgl. Abschnitt 10.

Bei Anschluss des Schnittstellenkonverters (vgl. 5.7) sind für die 2. serielle Schnittstelle die folgenden Werte zu parametrieren:

Parameter	Eingabe
Seriell 2 Parität	Keine
Seriell 2 Anzahl Bit	8 Bit
Seriell 2 Baudrate	38400
Seriell 2 Adresse	1
Seriell 2 Stoppbits	1 Bit

9.3 Servicemenü

Service	SKI	SKI	
Konfig. speichern	Konfig. laden	Sprache	Gerät
Werkskonfig. laden	Zähler zurücksetzen	Datum & Zeit	USB
Kalibrierung	Neustart	Freischaltung	
ŝ	\rightarrow	\leftarrow \sim	

Abbildung 38: Das Servicemenü

Wert Auswahlmöglichkeit Die aktuellen Einstellungen werden nach Rückfrage dauerhaft abge-Konfig. speichern legt. Konfig. laden Die letzte Konfiguration wird nach Rückfrage geladen (ungespeicherte Änderungen werden zurückgesetzt). Werkskonfig. laden Die Werkskonfiguration wird nach Rückfrage geladen (der Auslieferungszustand der Parametrierung wird wiederhergestellt). Zähler zurücksetzen Die Zählerstände werden nach Rückfrage zurückgesetzt. Kalibrierung Aufrufen des Kalibriermenüs Neustart Nach einer Rückfrage wird der AccuMind[®] neu gestartet. Sprache Die Sprache wird zw. Deutsch und Englisch umgeschaltet. Gerät Es werden die Seriennummer, die Hardware-ID und die Softwareversion angezeigt. Datum & Zeit Das Datum und die Uhrzeit lassen sich einstellen. USB Das USB-Menü wird aufgerufen. Das Freischaltmenü wird aufgerufen. Freischaltung

Im Servicemenü (vgl. Abbildung 38) lassen sich die folgenden Eingaben vornehmen:

9.3.1 Neustart inkl. Updatefunktion

Eine neue Firmwaredatei kann von der S.K.I. GmbH zur Verfügung gestellt werden. Diese Datei "a.bin" wird dann auf einen mit FAT32 formatierten USB-Stick kopiert.

Bei jedem Neustart prüft der AccuMind[®], ob am USB-Anschluss ein USB-Stick mit einer neuen Firmware vorhanden ist. Wenn eine neue Firmware gefunden wurde, erscheint die Meldung "Found USB ... trying to flash new firmware". Danach startet der AccuMind[®] neu.

Der AccuMind[®] ist so entworfen, dass die Einstellungen und Zählerstände bei einem Update erhalten bleiben, es wird trotzdem dringend empfohlen, die Einstellungen und Zählerstände des AccuMind[®] vor dem Updatevorgang zu sichern (vgl. 9.3.3).

9.3.2 Kalibriermenü

Der AccuMind[®] wird standardmäßig kalibriert ausgeliefert. In diesem Menü besteht die Möglichkeit, die Ein- und Ausgänge zu kalibrieren.

9.3.3 USB-Menü

In diesem Menü können die Einstellungen und Zählerstände des AccuMind[®] auf einen USB-Stick (FAT32-formatiert) exportiert und von dort importiert werden. Außerdem kann das Logging auf einen USB-Stick parametriert werden. Während des Loggings erscheint oben rechts im Display ein rot ausgefüllter Kreis.

Wert	Auswahlmöglichkeit	Bemerkung
Parameter	Ausklappfunktion	
Parameter importieren	Funktionsauslösung	Parameter vom USB-Stick importieren

AccuMind[®]

Wert	Auswahlmöglichkeit	Bemerkung
Parameter exportieren	Funktionsauslösung	Parameter auf den USB-Stick exportieren
Kalibrierung	Ausklappfunktion	
Kalibrierung importieren	Funktionsauslösung	Kalibrierung vom USB-Stick importieren
Kalibrierung exportieren	Funktionsauslösung	Kalibrierung auf den USB-Stick exportieren
Zählerstände	Ausklappfunktion	
Zählerstände importieren	Funktionsauslösung	Zählerstände vom USB-Stick importieren
Zählerstände exportieren	Funktionsauslösung	Zählerstände auf den USB-Stick exportieren
Wärmeträgeröl	Ausklappfunktion	
Wärmeträgeröl importieren	Funktionsauslösung	Importiert das benutzerdefinierte Öl vom USB-Stick
Wärmeträgeröl exportieren	Funktionsauslösung	Exportiert das benutzerdefinierte Öl auf den USB- Stick
Logging	Ausklappfunktion	
Aktiv	An; Aus	Schaltet das Logging ein bzw. aus.
Intervall	Zahlenwert	Angabe des Speicherintervalls

Hinweise:

Die Einstellungen und Zählerstände werden auf dem USB-Stick als JSON-Dateien im Stammverzeichnis abgelegt. Die Zuordnung ist dabei die folgende:

Dateiname	Inhalt
PARAMS.JSO	Parameter
CALIB.JSO	Kalibrierung
COUNTER.JSO	Zählerstände

Die Werte für das Wärmeträgeröl werden in einer CSV-Datei "custom_oil.csv" im Stammverzeichnis gespeichert. Diese Datei hat folgende Form:

```
Name des Öls
T [K],rho [kg/m<sup>3</sup>],eta [Pa*s],cp [J/(kg*K)]
273.15,842.7,0.02842,2007
283.15,836.1,0.01751,2043
...
```

Jede Flüssigkeit, für welche die o.a. Stoffdaten in Tabellenform vorliegen, kann als "Öl" importiert werden.

Die Logging-Funktion erzeugt CSV-Dateien in einem Unterordner mit dem Namen "Recorder". Pro Tag wird jeweils eine neue Datei angelegt. Die Dateien enthalten Spalten für alle Prozess- und Kontrollwerte, also auch solche, die von der aktuellen Anwendung des AccuMind[®] ggfls. nicht benötigt werden. Solche Werte werden dann mit "0" bzw. "nan" ausgegeben.

9.3.4 Menü "Freischaltung"

Der AccuMind[®] kann mit verschiedenen Optionen bestellt werden. Der Typenschlüssel (vgl. Abschnitt 13) bildet diese Optionen ab. Über das Menü "Freischaltung" lassen sich nachträglich Funktionen aus den Bereichen "Betriebsart", "Funktionserweiterung" und "2. Schnittstelle" freischalten. Der Code für die Freischaltung der jeweiligen Werte kann von der S.K.I. GmbH bezogen werden.

Bei QAL1-Anwendung

Der AccuMind[®] für QAL1-Anwendung hat eine eigene Firmware. Die Betriebsart lässt sich somit nicht umstellen.

Der Code für eine Option wird über das Menü gemäß folgender Tabelle eingetragen. Bei nicht freigeschalteten Optionen steht die Ziffer "0". Für bereits freigeschaltete Funktionen wird der Code angezeigt.

Wert	Auswahlmöglichkeit	Bemerkung
Betriebsart	Ausklappfunktion	
TG	Zahlenwert	
NG	Zahlenwert	Beinhaltet auch TG
Funktionserweiterung	Ausklappfunktion	
AZ	Zahlenwert	
LA	Zahlenwert	
2. Schnittstelle	Ausklappfunktion	
MS	Zahlenwert	Auch notwendig für PB bzw. PN (Anschluss des Schnittstellenkonverters; diese Option wird bei Be- stellung von PB bzw. PN für die 2. Schnittstelle au- tomatisch mit freigeschaltet)
DA	Zahlenwert	
MN	Zahlenwert	

9.4 Menü "Zugriff"

Zugriff		SKI
Zugriffsrechte änd	dern	
Ausloggen		
Codes ändern		[-] —
Level 1		
Level 2		~
	Beenden	

Abbildung 39: Menü "Zugriff"

Im Menü	"Zugriff"	(vgl.	Abbildung	39)	kann	man	zu	einem	anderen	Zugriffsleve	l wechseln	(vgl.	6.2).
Außerden	n können	die C	odes geän	dert	werd	en.							

Wert	Auswahlmöglichkeit	Bemerkung
Zugriffsrechte ändern	Code-Abfrage	Nach Eingabe des entsprechenden Codes wird in das gewünschte Zugriffslevel gewechselt
Ausloggen	Funktionsauslösung	Der Benutzer wird ausgeloggt. Es erfolgt ein Rück- sprung zum Prozessbildschirm
Codes ändern	Ausklappfunktion	
Level 1	Code-Abfrage	Eingabe eines neuen Codes für Level 1*
Level 2	Code-Abfrage	Eingabe eines neuen Codes für Level 2*
Level 3	Code-Abfrage	Eingabe eines neuen Codes für Level 3*

*: Der Code kann jeweils für das derzeitige Zugriffslevel und alle darunter liegenden geändert werden.

9.5 Menü "Displayeinstellungen"

Displayeinstellungen	SKI
Helligkeit	80
Standbymodus	Dimmen
Minuten bis Standby	2 —
Dimmerlevel	10

Beenden

Abbildung 40: Displayeinstellungen

Im Menü "Displayeinstellungen" (vgl. Abbildung 40) lässt sich die Helligkeit des Displays einstellen.

Wert	Auswahlmöglichkeit	Bemerkung
Helligkeit	Zahlenwert	Einstellbereich von 0 (= dunkel) bis 100 (= hell)
Standbymodus	Deaktiviert Dimmen Ausschalten	Es kann ein Standbymodus für das Display parame- triert werden: Nach der entsprechenden Wartezeit wird das Display gedimmt oder es schaltet sich ab.
Minuten bis Standby	Zahlenwert	Die Dauer bis zum Dimmen/Ausschalten
Dimmerlevel	Zahlenwert	Die Helligkeit im gedimmten Zustand: Einstellbereich von 0 (= dunkel) bis 100 (= hell)

Hinweis:

Wenn sich das Display des AccuMind[®] im Standbymodus befindet (das Display also gedimmt oder abgeschaltet ist), führt ein kurzer Druck auf eine beliebige Stelle des Displays dazu, dass es erneut mit der Standardhelligkeit leuchtet und anschließende Toucheingaben werden wieder normal verarbeitet.

Falls der AccuMind[®] schlecht auf Berührungseingaben reagiert bzw. andere Funktionen ausgeführt werden als erwartet, kann es notwendig sein, den Touchscreen zu kalibrieren.

Bei jedem Neustart des AccuMind[®] wird bildschirmfüllend das Firmenlogo "SKI" angezeigt. Wenn man auf dieses drückt, wird der Kalibriermodus des Displays gestartet.

Es wird ein Punkt auf dem Display angezeigt (vgl. Abbildung 41), der mit dem Finger gedrückt werden muss. Der Punkt verschwindet darauf hin und es erscheint ein zweiter Punkt. Nachdem auf diesen gedrückt wurde, erscheint schließlich ein dritter Punkt und nach einem Druck darauf ist die Kalibrierung des Displays abgeschlossen. Danach stellt der AccuMind[®] die normale Prozessanzeige dar.

Abbildung 41: Display des AccuMind® im Kalibriermodus

10 Digitale Schnittstellen

10.1 Webserver

Vorrausetzungen: Eine Verbindung des AccuMind[®] mit dem Netzwerk ist hergestellt (vgl. 5.5) und die Parametrierung der Schnittstelle wurde entsprechend vorgenommen (vgl. 9.2.5).

Über einen Webbrowser lässt sich nach Eingabe der IP-Adresse des AccuMind[®] eine Übersichtsseite mit Prozessdaten, Zählerständen etc. aufrufen. Eine Fernkonfiguration des AccuMind[®] ist aus Sicherheitsgründen nicht vorgesehen. Es erfolgt stets nur ein lesender Zugriff.

10.2 Modbus

Vorrausetzungen: Eine Verbindung des AccuMind[®] mit dem Netzwerk ist hergestellt (für Modbus-TCP vgl. 5.5; für Modbus-RTU vgl. 5.4.7) und die Parametrierung der Schnittstelle wurde entsprechend vorgenommen (vgl. 9.2.5). Die Port-Nr. für Modbus-TCP ist 502.

Die folgenden Abschnitte zeigen die für die Kommunikation notwendigen Zuordnungstabellen.

10.2.1 Input Registers

Hinweis: Die Zähler setzen sich jeweils aus einem Ganzzahlanteil und einem Nachkommaanteil zusammen. Die Übertragung der Werte geschieht wie folgt: Big endian; high byte first; high word first.

MODULE	ID	Start address	End address	Hint	Bits	Туре
RESERVED	0	0	17		288	
Firmware version	18	18	19	MMmmrr	32	int
Heat totalizer 1	20	20	23	Q1	64	int
Heat totalizer fraction 1	24	24	25	Q1 fract	32	IEEE754 FLOAT

MODULE	ID	Start address	End address	Hint	Bits	Туре
RESERVED	26	26	27		32	
Heat totalizer 2	28	28	31	Q2	64	int
Heat totalizer fraction 2	32	32	33	Q2 fract	32	IEEE754 FLOAT
RESERVED	34	34	35		32	
Unit heat totalizer	36	36	36	1105=[kWh] fix.	16	int
Standard volume totalizer 1	37	37	40	V _n 1	64	int
Standard volume totalizer fraction 1	41	41	42	V _n 1 fract	32	IEEE754 FLOAT
RESERVED	43	43	44		32	
Standard volume totalizer 2	45	45	48	V _n 2	64	int
Standard volume totalizer fraction 2	49	49	50	V _n 2 fract	32	IEEE754 FLOAT
RESERVED	51	51	52		32	
Unit standard volume	53	53	53	400=[Nm³] fix.	16	int
Actual volume totalizer 1	54	54	57	V1	64	int
Actual volume totalizer fraction 1	58	58	59	V1 fract	32	IEEE754 FLOAT
RESERVED	60	60	61		32	
Actual volume totalizer 2	62	62	65	V2	64	int
Actual volume totalizer fraction 2	66	66	67	V2 fract	32	IEEE754 FLOAT
RESERVED	68	68	69		32	
Unit actual volume	70	70	70	300=[m³] fix.	16	int
Standard volume flow	71	71	72	qvn	32	IEEE754 FLOAT
RESERVED	73	73	74		32	
Unit standard volume flow	75	75	75	201=[Nm³/h] fix.	16	int
Actual flow	76	76	77	qv	32	IEEE754 FLOAT
RESERVED	78	78	79		32	
Unit actual flow rate	80	80	80	101=[m³/h] fix.	16	int
Mass totalizer line 1	81	81	84	m1	64	int
Mass totalizer fraction 1	85	85	86	m1 fract	32	IEEE754 FLOAT
RESERVED	87	87	88		32	
Mass totalizer 2	89	89	92	m2	64	int
Mass totalizer fraction 2	93	93	94	m2 fract	32	IEEE754 FLOAT
RESERVED	95	95	96		32	
Unit mass totalizer	97	97	97	901=[kg] fix.	16	int
Mass flow	98	98	99	q _m	32	IEEE754 FLOAT
RESERVED	100	100	101		32	
Unit mass flow	102	102	102	804=[kg/h] fix.	16	int

MODULE	ID	Start address	End address	Hint	Bits	Туре
Temperature 1	103	103	104	T1	32	IEEE754 FLOAT
RESERVED	105	105	106		32	
Unit temperature 1	107	107	107	501=[°C] fix.	16	int
Temperature 2	108	108	109	Т2	32	IEEE754 FLOAT
RESERVED	110	110	111		32	
Unit temperature 2	112	112	112	501=[°C] fix.	16	int
Temperature difference	113	113	114	ABS(T2 – T1)	32	IEEE754 FLOAT
RESERVED	115	115	116		32	
Unit temperature difference	117	117	117	2700=[K] fix.	16	int
Differential pressure	118	118	119	dp	32	IEEE754 FLOAT
RESERVED	120	120	121		32	
Unit differential pressure	122	122	122	703=[mbar] fix.	16	int
Absolute pressure	123	123	124	р	32	IEEE754 FLOAT
RESERVED	125	125	126		32	
Unit absolute pressure	127	127	127	604=[bar] fix.	16	int
Density 1	128	128	129	rho1	32	IEEE754 FLOAT
RESERVED	130	130	131		32	
Unit density 1	132	132	132	1800=[kg/m³] fix.	16	int
Density 2	133	133	134	rho2	32	IEEE754 FLOAT
RESERVED	135	135	136		32	
Unit density 2	137	137	137	1800=[kg/m³] fix.	16	int
Flow velocity	138	138	139	v	32	IEEE754 FLOAT
RESERVED	140	140	141		32	
Unit flow velocity	142	142	142	2200=[m/s] fix.	16	int
Compressibility	143	143	144	Z	32	IEEE754 FLOAT
RESERVED	145	145	146		32	
Supercompressibility	147	147	148	Zn	32	IEEE754 FLOAT
RESERVED	149	149	150		32	
Specific enthalpy 1	151	151	152	h1	32	IEEE754 FLOAT
RESERVED	153	153	154		32	
Unit specific enthalpy 1	155	155	155	2800=[kJ/kg] fix.	16	int
Specific enthalpy 2	156	156	157	h2	32	IEEE754 FLOAT
RESERVED	158	158	159		32	
Unit specific enthalpy 2	160	160	160	2800=[kJ/kg] fix.	16	int
Heat power	161	161	162	dQ	32	IEEE754 FLOAT
MODULE	ID	Start address	End address	Hint	Bits	Туре
-----------------	-----	------------------	----------------	----------------	------	------
RESERVED	163	163	164		32	
Unit heat power	165	165	165	1001=[kW] fix.	16	int
Offset:	0	Shorts:	156		312	

10.2.2 Input Status

MODULE	ID	Address (Bit)	Туре
STATUS OK	0	0	bool
STATUS WARNING	1	1	bool
STATUS FAILURE	2	2	bool

10.2.3 Einheiten

Parameter	Value	Unit
q_v (actual flow rate)	101	m³/h
q _{vn} (standard volume flow)	201	Nm³/h
V (volume)	300	m³
V_n (standard volume)	400	Nm ³
T (temperature)	501	°C
p (pressure)	604	bar
dp (differential pressure)	703	mbar
q _m (mass flow)	804	kg/h
m (mass)	901	kg
dQ (actual heat power)	1001	kW
Q (heat totalized)	1105	kWh
rho (density)	1800	kg/m³
v (velocity)	2200	m/s
t _{diff} (temperature difference)	2700	К
h (specific enthalpy)	2800	kJ/kg

10.3 M-Bus

Vorrausetzungen: Eine Verbindung des AccuMind[®] mit dem Netzwerk ist hergestellt (vgl. 5.4.7) und die Parametrierung der Schnittstelle wurde entsprechend vorgenommen (vgl. 9.2.5).

Die folgende Tabelle zeigt die Datensätze für M-Bus.

Datensatz (Data set)	Variable	Beschreibung (Description)	Einheit (Unit)
1	q _m	Massenstrom (mass flow)	kg/h
2	qv	Volumenstrom (volume flow)	m³/h
3	q _{Vn}	Normvolumenstrom (standard volume flow)	m³/h
4	dQ	Wärmeleistung (heat power)	kW
5	р	Absolutdruck (absolute pressure)	bar
6	T1	Temperatur 1 (temperature 1)	°C
7	T2	Temperatur 2 (temperature 2)	°C
8	dp	Differenzdruck (differential pressure)	mbar
9	m1	Masse 1 (mass 1)	t
10	m2	Masse 2 (mass 2)	t
11	Q1	Wärmemenge 1 (heat quantity 1)	kWh
12	Q2	Wärmemenge 2 (heat quantity 2)	kWh
13	V _n 1	Normvolumen 1 (standard volume 1)	m³
14	V _n 2	Normvolumen 2 (standard volume 2)	m³
15	V1	Volumen 1 (volume 1)	m³
16	V2	Volumen 2 (volume 2)	m³

10.3.1 Datensätze

10.4 Profibus/Profinet

Vorrausetzungen: Die Verbindung des AccuMind[®] mit dem Schnittstellenkonverter ist hergestellt (vgl. 5.7.2) und die Parametrierung der 2. seriellen Schnittstelle wurde entsprechend vorgenommen (vgl. 9.2.5).

Die Tabelle unter 10.4.4 zeigt die Zuordnung der Module für Profibus/Profinet.

10.4.1 Statusmeldungen und Parametrierung des Profibus-Konverters

Der Profibus-Konverter hat 6 LEDs zur Statusanzeige. Außerdem hat er zwei Drehschalter zur Einstellung der Profibus-Stationsadresse (vgl. Abbildung 42)

Abbildung 42: Profibus-Modul mit Status-LEDs und Drehschaltern

Folgende Tabelle beschreibt die Statusanzeigen:

LED	Anzeige	Bedeutung
1 (Online)	Grün Aus	Online Nicht online
2 (Offline)	Rot Aus	Offline Nicht offline
3 (Not used)	-	-
4 (Fieldbus Diagnostics)	Aus Rot blinkend (1 Hz) Rot blinkend (2 Hz) Rot blinkend (4 Hz)	Keine Diagnosedaten vorhanden Konfigurationsfehler Nutzer-Parameter-Datensatz-Fehler Initialisierungsfehler
5 (Subnet Status)	Grün blinkend Grün Rot	Verbindung aktiv, aber Transaktionsfehler Verbindung aktiv Transaktions-Timeout oder Verbindung inaktiv
6 (Device Status)	Aus Rot/grün wechselnd Grün Grün blinkend Rot Rot blinkend	Keine Spannungsversorgung Fehlende/fehlerhafte Konfiguration Initialisierungsphase In Betrieb Bootloader-Modus Defekt

Hinweis: Die Drehschalter A und B befinden sich hinter einer Abdeckung, die sich vorsichtig mit einem flachen Schraubendreher aufhebeln lässt.

Die Einstellung der Stationsadresse geschieht über die beiden Drehschalter A und B gemäß folgendem Zusammenhang: Stationsadresse = $10 \times B + A$

Ein Beispiel für die Adresse 42 zeigt Abbildung 43: Stationsadresse = $10 \times 4 + 2 = 42$

Abbildung 43: Beispielkonfiguration: Adresse 42

Die Änderung der Stationsadresse darf nur im spannungsfreien Zustand erfolgen.

10.4.2 Statusmeldungen des Profinet-Konverters

Der Profinet-Konverter hat 6 LEDs zur Statusanzeige (vgl. Abbildung 44).

Abbildung 44: Profinet-Modul mit Status-LEDs

LED	Anzeige	Bedeutung
1 (Communication Status)	Aus Grün Grün blinkend	Offline Online; IO-Controller verbunden und Zustand "Run" Online; IO-Controller verbunden und Zustand "Stop"
2 (Module Status)	Aus Grün Einmaliges grünes Blinken Zweimaliges grünes Blinken Einmaliges rotes Blinken Dreimaliges rotes Blinken Viermaliges rotes Blinken	Keine Spannungsversorgung/nicht initialisiert Initialisiert, keine Fehler Diagnosedaten vorhanden Blinkt auf Anforderung einer Diagnoseeinheit Konfigurationsfehler Kein Stationsname/keine IP zugewiesen Interner Fehler
3 (Link, activity)	Aus Grün Grün blinkend	Keine Verbindung Verbunden mit dem Ethernet Eine Übertragung findet statt
4 (Not used)	-	-
5 (Subnet Status)	Grün blinkend Grün Rot	Verbindung aktiv, aber Transaktionsfehler Verbindung aktiv Transaktions-Timeout oder Verbindung inaktiv
6 (Device Status)	Aus Rot/grün wechselnd Grün Grün blinkend Rot Rot blinkend	Keine Spannungsversorgung Fehlende/fehlerhafte Konfiguration Initialisierungsphase In Betrieb Bootloader-Modus Defekt

10.4.3 Einbindung der Gerätestammdaten-Dateien

Um den AccuMind[®] in das Leitsystem einzubinden, werden Gerätestammdaten-Dateien zur Verfügung gestellt.

Für Profibus: "HMSB1803.gsd" und "Master.gcf"

Für Profinet: "GSDML-V2.3-HMS-ABC_PROFINET_IO-20141127.xml"

10.4.4 Zuordnung der Module

Hinweis: Die Zähler setzen sich jeweils aus einem Ganzzahlanteil und einem Nachkommaanteil zusammen.

MODULE	ID	Start address	End address	Hint	Bits	Туре
Firmware version	0	0	3	MMmmrr	32	int
Heat totalizer 1	4	4	11	Q1	64	int
Heat totalizer fraction 1	12	12	15	Q1 fract	32	IEEE754 FLOAT
Heat totalizer 2	16	16	23	Q2	64	int
Heat totalizer fraction 2	24	24	27	Q2 fract	32	IEEE754 FLOAT
Unit heat	28	28	29	1105=[kWh] fix.	16	int
Standard volume totalizer 1	30	30	37	V _n 1	64	int
Standard volume totalizer fraction 1	38	38	41	V _n 1 fract	32	IEEE754 FLOAT

MODULE	ID	Start address	End address	Hint	Bits	Туре
Standard volume totalizer 2	42	42	49	V _n 2	64	int
Standard volume totalizer fraction 2	50	50	53	V _n 2 fract	32	IEEE754 FLOAT
Unit standard volume	54	54	55	400=[Nm³] fix.	16	int
Actual volume totalizer 1	56	56	63	V1	64	int
Actual volume totalizer fraction 1	64	64	67	V1 fract	32	IEEE754 FLOAT
Actual volume totalizer 2	68	68	75	V2	64	int
Actual volume totalizer fraction 2	76	76	79	V2 fract	32	IEEE754 FLOAT
Unit actual volume	80	80	81	300=[m³] fix.	16	int
Standard volume flow	82	82	85	q∨n	32	IEEE754 FLOAT
Unit standard volume flow	86	86	87	201=[Nm³/h] fix.	16	int
Actual flow	88	88	91	qv	32	IEEE754 FLOAT
Unit actual flow rate	92	92	93	101=[m³/h] fix.	16	int
Mass totalizer line 1	94	94	101	m1	64	int
Mass totalizer fraction 1	102	102	105	m1 fract	32	IEEE754 FLOAT
Mass totalizer 2	106	106	113	m2	64	int
Mass totalizer fraction 2	114	114	117	m2 fract	32	IEEE754 FLOAT
Unit mass	118	118	119	901=[kg] fix.	16	int
Mass flow	120	120	123	q _m	32	IEEE754 FLOAT
Unit mass flow	124	124	125	803=[kg/h] fix.	16	int
Temperature 1	126	126	129	T1	32	IEEE754 FLOAT
Unit Temperature 1	130	130	131	501=[°C] fix.	16	int
Temperature 2	132	132	135	T2	32	IEEE754 FLOAT
Unit Temperature 2	136	136	137	501=[°C] fix.	16	int
Temperature difference	138	138	141	ABS(T2 - T1)	32	IEEE754 FLOAT
Unit temperature difference	142	142	143	2700=[K] fix.	16	int
Differential pressure	144	144	147	dp	32	IEEE754 FLOAT
Unit differential pressure	148	148	149	703=[mbar] fix.	16	int
Absolute pressure	150	150	153	Р	32	IEEE754 FLOAT
Unit absolute pressure	154	154	155	604=[bar] fix.	16	int
Density 1	156	156	159	rho1	32	IEEE754 FLOAT
Unit density 1	160	160	161	1800=[kg/m³] fix.	16	int
Density 2	162	162	165	rho2	32	IEEE754 FLOAT
Unit density 2	166	166	167	1800=[kg/m ³] fix.	16	int
Flow velocity	168	168	171	v	32	IEEE754 FLOAT
Unit flow velocity	172	172	173	2200=[m/s] fix.	16	int

MODULE	ID	Start address	End address	Hint	Bits	Туре
Compressibility	174	174	177	Z	32	IEEE754 FLOAT
Supercompressibility	178	178	181	Zn	32	IEEE754 FLOAT
Specific enthalpy 1	182	182	185	h1	32	IEEE754 FLOAT
Unit specific enthalpy 1	186	186	187	2800=[kJ/kg] fix.	16	int
Specific enthalpy 2	188	188	191	h1	32	IEEE754 FLOAT
Unit specific enthalpy 2	192	192	193	2800=[kJ/kg] fix.	16	int
Heat power	194	194	197	dQ	32	IEEE754 FLOAT
Unit heat power	198	198	199	1001=[kW] fix.	16	int
STATUS OK	200	200	200		8	bool
STATUS WARNING	201	201	201		8	bool
STATUS FAILURE	202	202	202		8	bool
Offset:	0	Shorts:	203		203	

10.4.5 Einheiten

Parameter	Value	Unit
q_v (actual flow rate)	101	m³/h
q _{vn} (standard volume flow)	201	Nm³/h
V (volume)	300	m³
V_n (standard volume)	400	Nm³
T (temperature)	501	°C
p (pressure)	604	bar
dp (differential pressure)	703	mbar
q _m (mass flow)	804	kg/h
m (mass)	901	kg
dQ (actual heat power)	1001	kW
Q (heat totalized)	1105	kWh
rho (density)	1800	kg/m³
v (velocity)	2200	m/s
t _{diff} (temperature difference)	2700	К
h (specific enthalpy)	2800	kJ/kg

11 Konformitätserklärung

Konformitätserklärung Declaration of Conformity Déclaration de conformité

Wir, die Firma We, the company Nous, la société

> S.K.I. Schlegel und Kremer Industrieautomation GmbH Hanns-Martin-Schleyer-Straße 22, 41199 Mönchengladbach, Germany

> > AccuMind[®]

erklären in alleiniger Verantwortung, dass das Produkt declare with full responsibility that the product déclarons sous notre seule responsabilité que le produit

deciarons sous notre seule responsabilite que le produ

Universeller Durchflussrechner Universal Flow Computer Calculateur universel

auf das sich diese Erklärung bezieht, mit folgender Richtlinie und Norm übereinstimmt:

which this declaration applies to, suits directive and standard:

qui fait objet de cette déclaration, est conforme à la directive et norme:

Richtlinie/Directive/Direct	tive	Norm/Standard/Norme
2014/30/EU	EMV Richtlinie EMC Directive Directive CEM	EN 61326-1:2013 IEC61000-4-2:2009, IEC61000 -4-3:2006+A1:2007+A2:2010, IEC61000-4-4:2012, IEC61000 -4-5:2014, IEC61000-4-6:2013, IEC61000-4-11:2004 EN55011:2009+A1:2010 CISPR 11:2009+A1:2010
2014/35/EU	Niederspannungsrichtlinie Low-voltage Directive Directive Basse tension	EN60950-1:2006 + A2:2013

Die technische Dokumentation, die zur Gewährleistung der Einhaltung der EG Richtlinien benötigt wird, wurde erstellt und liegt zur Überprüfung durch eine autorisierte Stelle bereit.

The technical documentation required to demonstrate that the products meet the requirements of the above EC directives has been compiled and is available for inspection by relevant enforcement authorities.

La documentation technique exigée pour démontrer que les produits répondent aux exigences des directives ci-dessus de CE a été compilée et estdisponible pour l'inspection par des autorités chargées de l'application ppropriées.

Die Kennzeichnung des Geräts enthält folgende Angabe:

The equipment name plates contain the following information:

La plaque signalétique de l'euqipement contient,

			Kennzeichn	ung/Marking/Repères		
Richtlinie	Kategorie	Benannte Stelle		Nr.		
Directive	Category	Notified Body	4	No.		
Directive	Catégorie	Organisme notifié		Nr.		
2014/30/EU	n. a.	n. a.	CE	n. a.		
2014/35/EU	n. a.	n. a.	CE	n. a.		

Mönchengli dbach, den 23.09.2024

M C (Daniel Schlege G(-)

(Christian Pergen, OS/OA)

ADQ-Konf_AccuMind-2439.xlsx

RoHS-Konformitätserklärung 12

RoHS-Konformitätserklärung

Declaration of RoHS-Compliance

Elektronischen Baugruppen und Geräte, die von der Electronic assemblies and devices delivered by

> S.K.I. Schlegel und Kremer Industrieautomation GmbH Hanns-Martin-Schleyer-Straße 22, 41199 Mönchengladbach, Germany

geliefert wurden, erfüllen die RoHS Richtlinie 2011/65/EU und beinhalten keine oder nur die in den Grenzen nach Artikel 4 zulässigen 0,1 Gewichtsprozente (1000 ppm) an Flammenhemmer und Schwermetalle. Im Einzelnen betrifft das

comply with the RoHS Directive 2011/65 / EU and do not contain or only contain 0.1 per cent by weight permitted within the limits of Article 4 (1000 ppm) of flame retardants and heavy metals. In detail, this concerns

Blei (Pb) Quecksilber (Hg)

Cadmium (Cd; nur 100 ppm) Hexavalentes Chrom (CrVI) Polybromierte Biphenyle (PBB) Polybromierte Diphenylether (PBDE) Di(2-ethylhexyl)phthalat (DEHP) Butylbenzylphthalat (BBP) Dibutylphthakat (DBP) Diisobutylphtalat (DIBP)

Lead (Pb) Mercury (Hg) Cadmium (Cd, only 100 ppm) Hexavalent chromium (CrVI) Polybrominated biphenyls (PBB) Polybrominated diphenyl ethers (PBDE) Di(2-ethylhexyl) phthalate (DEHP) Butylbenzyl phthalate (BBP) Dibutyl phthacate (DBP) Diisobutyl phthalate (DIBP)

Diese Erklärung erfolgt nach bestem Wissen und Gewissen durch die S.K.I. Schlegel & Kremer Industrieautomation GmbH. Sie basiert teilweise auf den Informationen, die der S.K.I. Schlegel & Kremer Industrieautomation GmbH durch seine Lieferanten zur Verfügung gestellt wurden.

This declaration is made to the best of our knowledge and belief by S.K.I. Schlegel & Kremer Industrieautomation GmbH. In part it is based on information provided by suppliers to S.K.I. Schlegel & Kremer Industrieautomation GmbH.

Mönchengladbach, den 23.09.2024

(Christian Peggen, QMB)

ADQ-Konf_RoHS-2439.xlsx

13 Der Typenschlüssel

Acculvlind									
Gehäuse & Bedienmod	ul								
	PM								Schalttafeleinbau, 4,3"-TFT-Touch-Display
	WM								Wandaufbaugehäuse, IP65, 4,3"-TFT-Touch-Display
	WMA								wie Option "WM"; mit zusätzlichem dritten Analogausgang
Betriebsart									
		HB							Wärmemengenrechner für Dampf/Wasser/Thermalöle (Masse- ströme, Wärmeleistung und -menge) und Idealgasrechner
		QL							QAL1 inkl. Idealgasrechnung
		TG							Technische Gase (Masseströme, Wärmemengen; Berechnung der Gaseigenschaften nach realen Modellen)
		NG							Erdgase (Algorithmen SGERG-88, AGA-8 (DC92/G1/G2), NX-19, Stoffeigenschaften ISO-20765-1)
Netzspannung									
			AC						Weitspannungsnetzteil integriert, 90 250 V AC (50 60 Hz)
			DC						Gleichspannungsversorgung, 18 30 V DC
Funktionserweiterung									
				NA					Ohne
				AZ					Ansteuerung AccuFlo [®] Zero für automatischen Nullpunktab- gleich an handelsüblichen HART-fähigen Differenzdruck- Messumformern (eine Schnittstelle "DA" erforderlich)
				LS					Ansteuerung LSE-HD-Luftspüleinrichtung
				LA					Ansteuerung LSE-HD-Luftspüleinrichtung inkl. automatischem Nullpunktabgleich
1. Schnittstelle (Klemmen)									
					MS				Modbus Slave RTU
					MB				M-Bus
					DA				Modbus für Funktionserweiterung AZ
					MN				Modbus Master RTU
					PB				Profibus DP Slave
					PN				Profinet Slave
2. Schnittstelle (D-Sub)									
						NA			ohne
						MS			Modbus Slave RTU
						DA			Modbus für Funktionserweiterung AZ
						MN			Modbus Master RTU
						PB			Profibus DP Slave
PN						PN			Profinet Slave
Einstellung Kunden-Parameter									
							FC		Gerät mit Werksparametrierung (ohne Kundendaten)
							CP		Gerat mit Parametrierung gemäß Kundendaten
									Gerat mit Werksparametrierung und Werkskalibrierschein (5 Punkte, ohne Kundendaten)
							CA		Gerat mit Werksparametrierung und Werkskalibrierschein (5 Punkte, mit Kundendaten)
Messstellenkennzeichn	ung								
								DI	Messstellenkennzeichnung im Display
								∣ KK	Messstellenkennzeichnung im Display. Metallschild beiliegend

Hinweise:

Über das Menü "Freischaltung" (vgl. 9.3.4) lassen sich bestimmte Optionen freischalten.

S.K.I. Schlegel & Kremer Industrieautomation GmbH

Postfach 41 01 31 D-41241 Mönchengladbach

Hanns-Martin-Schleyer-Str. 22 D-41199 Mönchengladbach

 Tel:
 +49 (0) 2166/62317-0

 Web:
 www.ski-gmbh.com

 E-Mail:
 info@ski-gmbh.com

Warenzeichen und Logos sind Eigentum ihrer Besitzer. Technische Änderungen vorbehalten. Die Abbildungen können optionale Einbauten enthalten.

BA-AccuMind-v1q-de-2439